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Abstract

Engineering structures, including bridges, undergo fatigue loads over time,

leading to material degradation, reduced resistance, and increased risk of failure.

Regular local inspections or structural health monitoring (SHM) are crucial to

identify potential failures and predict fatigue life. However, challenges arise in

predicting the remaining useful life (RUL) of structures, such as limited data,

large structural dimensions, and estimating vehicle-induced loading. This study

addresses these challenges by employing Bayesian filtering-based SHM frame-

works for fatigue life prediction. Two conditions are considered: structures

with visible fatigue cracks and those without visible cracks. Cost-efficient and

practical detection algorithms are developed for both conditions. In structures

without visible cracks, RUL estimation utilizes Miner’s rule and the S-N curve

of the material, using stress data obtained through SHM. For structures with

visible cracks, RUL estimation focuses on crack length prognosis based on crack

growth history. The updated Paris model is used to simulate fatigue crack prop-

agation, with model parameters estimated using SHM data while accounting for

uncertainties.

For the structures with visible cracks and available crack growth history,

an online model-based approach is proposed to provide a probabilistic estimate

for fatigue life by jointly inferring fatigue parameters from available SHM data

using a Joint Extended Kalman Filter (JEKF). The effectiveness of the proposed

method is validated through numerical studies on two fracture scenarios: edge

and center cracks in a finite plate subjected to mechanical and thermal loading

conditions. Additionally, numerical simulations are performed to study the RUL

for a welded joint of a bridge based on its worst operational scenario. To validate

the accuracy of the proposed approach, an experimental study is conducted on

compact tension (CT) specimens, confirming its consistency in estimating fatigue

model parameters and subsequently predicting the RUL.

Further, to address the practical challenges in infrastructure fatigue mon-

itoring, wherein the structures are high-dimensional enhancing computational

and instrumentation expenses, probabilistic substructure monitoring approaches

powered by interacting filtering algorithms, such as particle and ensemble Kalman

filters (IP-EnKF) are employed to focus on critical segments or members of the

structure, thereby reducing computational complexity and improving efficiency.

The efficiency of the algorithm in estimating substructural health is rigorously

viii



demonstrated through both numerical and experimental studies. Further, the

unknown substructure boundary forces, required for estimating the fatigue life

of the substructure, are also reconstructed through post-processing. Numerical

experiments conducted on a bridge structure modelled with vehicle-structure

interaction aspect validate the proposed method. Several real-life experiments

are also done wherein the damage is however required to be simulated in its

calibrated digital twin.

Moreover, a similar substructure algorithm is employed to estimate the RUL

of a crack-free bridge structure. Numerical experiments are conducted on a re-

inforced concrete box girder bridge, considering vehicle-bridge interaction. A

parametric analysis investigates the relationships between the FDI and factors

such as surface roughness, vehicle speed, weight, and category, with the aim

of identifying dominant stimuli. The results demonstrate an accurate estima-

tion of health parameters and RUL. Additionally, a novel decomposed approach

for RUL estimation is developed, enabling the mapping of traffic information

to fatigue damage without the need for costly simulations. A case study is

presented, focusing on a reinforced concrete box girder bridge in Kamand, Hi-

machal Pradesh, India, to highlight the practical applicability of the approach

in real-world scenarios.

Keywords: Fatigue, structural health monitoring, remaining useful life, lim-

ited data, large structural dimensions, Bayesian filters, critical element, substruc-

ture, vehicle-bridge interaction.
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Chapter 1

Preamble

PhD research problems are typically derived from social challenges. Similarly,

my research problem draws inspiration from the remarkable longevity of the Vic-

toria Bridge in Mandi, Himachal Pradesh which has maintained its structural

integrity for a staggering 143 years (1877-2020) of service life. To safeguard the

heritage structure and avoid catastrophic failure, the bridge function has been

shut down in 2020. The decision was however abrupt and appeared to me as

necessary but not well-informed. This intrigued my interest in pursuing what

factors affect the service life of a structure, and how to estimate and predict the

accurate life of a civil structure using modern techniques so that an informed

decision can be taken to safeguard the interest of its users. Throughout this re-

search process, I have encountered numerous challenges such as limited data,

large structural dimensions, and estimating the vehicle-induced loading which I

addressed in different chapters of this thesis for predicting the accurate life of a

civil structure.

1.1 Introduction

The service phase is the most crucial period in the lifespan of civil engineer-

ing structures, and monitoring its safety and serviceability is therefore necessary

during its operation, especially for large structures. During this phase, con-

struction materials degrade over time due to mechanical factors such as ageing,

prolonged cyclic loading, unanticipated loads (e.g. earthquakes, cyclones), and

physio-chemical factors, such as steel corrosion and concrete carbonation. As

a result of material degradation, the capacity, and durability of the structure

degrade. This eventually leads to a decrease in the structural reliability while

1



increasing the probability of failure over time Chen (2018). To address such

risks, structural health monitoring (SHM) has emerged as an efficient approach

that harnesses information from the measured responses sampled from a network

of well-placed sensors attached all over the structure.

Material degradation, whether due to ageing-related decay from a prolonged

operation or sudden damage caused by natural disasters such as earthquakes,

eventually affects structural stiffness. Sudden damage can result in abrupt and

catastrophic structural failure, offering limited time for inspection or mainte-

nance. On the other hand, ageing-related decay occurs gradually, providing

sufficient time to identify the causes of stiffness degradation. As a result, the

objectives of SHM approaches and associated uncertainties differ significantly

for these two types of damage. When dealing with sudden damage, the primary

aim is to detect its occurrence and, if possible, localize the affected area. In

contrast, for structures experiencing slow deterioration, the focus shifts to prog-

nosis. This study specifically targets the latter type of structural deterioration,

and the algorithms employed are tailored to suit this objective.

The gradual deterioration of material caused by repeated cyclic loading is

commonly known as material fatigue, and the duration it takes for the material

to render the structure inoperable is referred to as the fatigue life of the structure.

One of the key challenges in this context is predicting the fatigue life while con-

sidering the limited measured structural responses and computational resources

available. Since fatigue failure can have catastrophic consequences, leading to

significant loss of lives, property damage, and economic disruption, it is crucial

to accurately and reliably predict the fatigue life for the design, maintenance,

and overall safety of bridge structures.

To estimate fatigue life, monitoring fatigue can be accomplished using stan-

dard SHM frameworks. These frameworks involve instrumenting the structure

to gather responses that can be used to make inferences about fatigue. The

assessment of fatigue through SHM is crucial for predicting future performance

and making cost-effective decisions regarding inspections, maintenance, repairs,

and replacements. However, various factors such as material characteristics, load

history, and environmental conditions introduce uncertainties of unknown mag-

nitudes into the estimation process. This necessitates the use of probabilistic

approaches, such as the Bayesian filter, rather than traditional deterministic

approaches, to predict fatigue life accurately in complex structures exposed to

real-life uncertainties from diverse sources Kuncham et al. (2022).

2



The focus of this study is on estimating the fatigue life of bridges, with the

solutions specifically designed for this type of structure while considering their

generalization capability. Significant progress has been made in this field, but

challenges remain due to limited data availability, the need to monitor large

structural dimensions, and the incorporation of uncertainties related to vehicle-

induced loading. This thesis explores these challenges and proposes solutions

to develop a more reliable and efficient approach for estimating fatigue life in

complex structures.

1.2 Background

Bridges are highly vulnerable to fatigue, exacerbated by environmental fac-

tors that contribute to material degradation. These structures experience cyclic

loads from traffic, wind, and other sources, and they are designed with a safety

margin below their structural capacity. Despite these precautions, fatigue fail-

ures can still occur during normal operation over an extended period, often

due to unforeseen complexities rather than extreme events such as overloading.

Fatigue-induced cracks develop gradually in materials after prolonged service,

initially having no significant impact on the overall behaviour of the structure.

However, once cracks initiate, they can propagate rapidly and uncontrollably,

leading to sudden and catastrophic fractures Metallurgy (1986). The absence of

clear warning signs or performance deterioration makes fatigue failures challeng-

ing to detect or incorporate into maintenance schedules.

To address fatigue failures, comprehensive investigations are necessary to

comprehend the material and mechanical behaviour of components subjected to

simulated operational conditions involving cyclic loads. These studies provide

valuable insights into the fatigue performance of the components.

1.2.1 Instances of significant fatigue

During the 19th century, fatigue in engineering structures presented a perplex-

ing phenomenon characterized by imperceptible damage and sudden, unforeseen

failures. However, in the 20th century, researchers made notable strides in under-

standing the initiation of fatigue mechanisms in engineering materials. Ye et al.

(2014) revealed that repeated loading could initiate the formation of microc-
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racks, which would subsequently propagate and ultimately result in structural

failure.

A few significant incidents exemplify the hazards of fatigue in engineering,

drawing upon examples from both historical and modern events. The Great

Molasses Flood of 1919 Julia (2019), which resulted from a failure of a steel tank,

(see Figure 1.1a) and the engine failures of a Boeing 777 in 2021 Pilar (2021), all

demonstrate the influence of fatigue in the materials involved (see Figure 1.1b).

These incidents underscore the importance of comprehending fatigue properties

and the necessity for proper engineering design and maintenance.

(a) Boston Molasses Flood Julia (2019). (b) Boeing 777 engine Pilar (2021).

Figure 1.1: Fatigue failures in the materials.

1.2.2 Significance of fatigue in bridge structures

The collapse of the Silver Bridge in 1967 (see Figure 1.2), resulting in the

tragic loss of 46 lives, raised concerns about the fatigue reliability of bridges Licht-

enstein (1993). This incident triggered a significant shift in bridge inspection

practices and the implementation of safety measures by the US government.

The Silver Bridge possessed distinctive design features, including high-tension

eye-bar chains, a unique anchorage system, and rocker towers. The bridge’s fail-

ure highlighted the perilous combination of stress concentrations and fatigue,

as well as the significance of structural redundancy. A small flaw in one of the

eye bars, subjected to repetitive loading over several decades, led to rapid crack

propagation and the eventual collapse of the bridge. The absence of redun-

dancy in both the eye-bar connection and the overall structure contributed to

the catastrophic failure Lichtenstein (1993).
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Figure 1.2: Silver bridge collapse due to fracture Matt (2017).

Subsequent bridge failures in the 20th and 21st centuries, including the I-

35 truss bridge in Minneapolis in 2007, the Ponte Morandi cable-stayed bridge

in Italy in 2018 (see Figures 1.3), the Florida international university (FIU)

pedestrian bridge in Miami (see Figures 1.4), Florida in 2018, and the Nanfang’ao

steel single-arch bridge in Taiwan in 2019, has further emphasized the importance

of bridge design and maintenance practices. These incidents have raised concerns

not only regarding the frequency of inspections but also the identification of

potential vulnerabilities in bridge structures.

Figure 1.3: I-35 W bridge collapse due to fatigue cracking David (2017).

The series of bridge failures witnessed in recent decades has exposed the

limitations of conventional bridge monitoring, which primarily focuses on diag-

nostic steps. Such an approach is insufficient for effectively evaluating the safety

of these vital infrastructures. To ensure the integrity of ageing structures and

prevent catastrophic collapses caused by subtle and hard-to-detect damage, new

methods for bridge monitoring are required. These methods should prioritize
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Figure 1.4: FIU pedestrian bridge collapse due to extensive cracking John (2019).

prognosis and incorporate specific considerations in bridge design.

To accomplish this goal, it is crucial to investigate the primary causes of

bridge failures, including design deficiencies, construction issues, detailing prob-

lems, and material shortcomings. By identifying potential failure mechanisms

associated with each cause, it becomes possible to develop innovative approaches

in bridge design and monitoring. The objective is to minimize the risk of future

bridge collapses and enhance the overall safety of these structures.

1.3 Degradation process

Fatigue primarily arises from prolonged exposure to cyclic operational forces,

and its effects become more significant when accompanied by other forms of

ageing-related material deterioration. The process of ageing-related degradation

is influenced by a range of physical and environmental factors that are unique to

each structure. These factors can induce changes in the chemical composition of

materials, subsequently affecting their mechanical and physical properties. As

a result, these changes diminish the lifespan of the structure, requiring prompt

repairs Gonzalez et al. (2020) to extend its fatigue life.

1.3.1 Degradation due to environmental factors

High humidity poses an ongoing challenge for civil structures constructed

with reinforced concrete and steel. When these materials come into contact with
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moisture, corrosion issues are initiated through electrochemical reactions. This

gradual process leads to the formation of rust and the degradation of the mate-

rials. The impact of corrosion on the reinforcement steel of a pier is depicted in

Figure 1.5a, where the loss of the protective coating and reduced cross-sectional

area result in a deterioration of the mechanical capacity. Similarly, unprotected

structural steel can experience widespread rusting, as shown in Figure 1.5b.

This oxidation reaction affects all components susceptible to corrosion, causing

significant damage Gonzalez et al. (2020).

(a) Reinforced concrete steel struc-
ture Mohammed (2015). (b) Steel structure Patricia (2014).

Figure 1.5: Degradation due to corrosion in civil structures.

1.3.2 Degradation due to physical factors

Wear is another gradual degradation process that occurs due to physical

forces, particularly from vehicle traffic traversing the main deck. The friction

generated during braking and acceleration contributes to wear and tear on the

structure. Bridges with piers exposed to water flow also experience wear due

to friction. Although traffic flow typically causes minimal wear on the deck,

any road defects can lead to increased wear and damage. Bridges with simply

supported girders often require construction joints between supports, which, if

poorly constructed, can result in the formation of bumps. Figure 1.6a showcases

a common issue with a construction joint that can be avoided by employing

appropriate joint procedures and industry-standard materials Gonzalez et al.

(2020).

Ultimately, when such material degradation processes get coupled with fatigue-
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induced deterioration resulting from alternating forces, the ultimate collapse of

the structure becomes unavoidable. With each load cycle, fatigue progressively

diminishes the material’s fatigue life, increasing its brittleness until failure oc-

curs. This degradation can remain undetected until the actual failure happens,

even if the resulting stress remains below the yield point. Figure 1.6b showcases

the growth of a crack due to cyclic stress loads, where no yielding zones are

observed in the beam, signifying a sudden crack failure.

(a) Bridge expansion joint damaged David
(2017).

(b) Fatigue crack growth in steel
beam Rob (2021).

Figure 1.6: Degradation due to wear and fatigue in civil structures.

1.3.3 Typical protection and mitigation strategies

During the design phase, preventive measures can be taken to address mate-

rial deterioration, including corrosion and wear Hernandez-Duque et al. (1995).

Applying epoxy coatings to isolate structural steel from moisture contact and uti-

lizing protective coatings for concrete reinforcement help preserve the structure’s

durability. Flexible roads require extra attention to mitigate wear, while rein-

forced concrete piers exposed to water flow need additional protective coatings

for reinforcing bars. However, fatigue degradation cannot be fully eliminated in

structures subjected to cyclic loads below the material’s yielding stress.

Acknowledging that reactive measures may not be practical for structures

subjected to severe repetitive loading and of high economic/social importance,

it is essential to consider proactive approaches to mitigate risks and reduce costs.

Implementing a reactive repair protocol could lead to significant infrastructure

downtime, while relying solely on scheduled maintenance without sufficient infor-
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mation may result in additional and unnecessary expenses. Therefore, adopting

a proactive approach becomes imperative. In this regard, utilizing SHM strate-

gies to estimate fatigue can offer an efficient alternative. SHM provides valuable

insights for timely maintenance and proactive decision-making, allowing for more

effective risk mitigation.

1.4 Evolution of fatigue comprehension

Fatigue is the term used to describe the process of crack initiation, formation,

and propagation in a material due to repeated loading. It occurs when cracks

develop from tiny material faults caused by the repetitive nature of the applied

load, and these cracks gradually grow with each loading cycle. The crack propa-

gation continues until it reaches a critical level, where the stress intensity factor

(SIF) exceeds the fracture toughness of the material. At this point, rapid crack

propagation occurs, often leading to the complete fracture of the structure.

In 1829, W.A.S. Albert performed load tests on an iron chain, marking the

inception of fatigue studies Collins (1993). The emergence of fatigue failures in

railway axles during the early 19th century prompted the first significant inves-

tigation into cyclic loading effects. Numerous machine components underwent

millions of cycles at stress levels below the yield point, with frequent documented

failures. Between 1852 and 1870, August Wöhler, a German railway engineer, es-

tablished and conducted the inaugural systematic fatigue study Christian (1999).

Later, Basquin made a substantial impact by introducing a logarithmic rela-

tionship between stress and cycle number in 1910, which helped in understanding

materials’ behaviour under fatigue. In 1933, Palmgren described linear cumu-

lative damage for the first time. In this concept, fatigue damage occurs when

materials deteriorate under specific load conditions and gradually accumulate

over time. Miner developed a mathematical approach based on Palmgren’s work

for quantifying cumulative damage in 1945. Based on the cumulative damage

to a component, this approach provided a way to estimate its remaining fatigue

life Miner (1945).

Paris made a significant discovery by proposing the theory of fatigue fracture

in 1960. This theory elucidates the incremental crack growth in materials sub-

jected to cyclic loading, resulting in the eventual failure of the component Paris
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(1963). The scientific understanding of fatigue and its impact on materials has

substantially advanced through these contributions and discoveries. They have

made it possible to predict fatigue life, design components with greater durabil-

ity, and ensure the reliability and safety of diverse structures and systems that

are susceptible to cyclic loads.

1.4.1 Physics behind the fatigue failure

The fatigue failure process in materials consists of three stages: crack ini-

tiation, crack propagation, and reaching a critical crack length that leads to

failure. In Region I, irreversible plastic deformation occurs due to the movement

of dislocations within the material’s lattice structure Callister et al. (2007). This

movement leads to the formation of multiple slip planes, as illustrated in Fig-

ure 1.7, ultimately resulting in the formation of microcracks. The microcracks

then continue to grow parallel to each other along crystallographic slip planes,

typically in the direction of maximum shear stress or shear mode, transitioning

to Region II known as crack propagation Rösler et al. (2007); Fatemi et al.

(2001). Figure 1.8 provides an example of this behaviour.

Figure 1.7: Pattern for Slip Bands Rösler et al. (2007).

As the crack propagates over successive cycles, the crack tip gradually be-

comes more blunted in comparison to its initial state under maximum load. In

certain cases, this blunted crack tip hinders further crack growth by reducing

the local concentration of stress. When the load is released or compressed, the

crack surfaces rejoin, resulting in a sharpening of the crack tip, followed by the

occurrence of slip once again. It is important to emphasize that the crack tip

does not return to its original state, but instead progresses and widens. This

cyclic process repeats with each subsequent loading cycle Metallurgy (1986).

Figure 1.9 illustrates the opening of the crack and the occurrence of localized

slip along the maximum shear planes, depicted by arrows.
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Figure 1.8: The transition from Region I (shear mode) to Region II (tensile
mode) Fatemi et al. (2001).

Figure 1.9: Crack growth and plastic blunting processes Metallurgy (1986).

When a crack is allowed to progress without any restrictions imposed by the

mechanisms, it becomes dominant and eventually reaches a critical length or

stress intensity, resulting in Region III fracture as shown in Figure 1.10. During

this stage, the fracture surface appears rough or jagged. Once the critical length

is attained, the crack grows rapidly and uncontrollably throughout the remaining

ligament of material González-Velázquez (2020). If the material is subjected to

high stresses, the crack can cause immediate separation with fracture surface

features typical of tensile fractures.
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Figure 1.10: Schematic diagrams of the fatigue-failure process.

1.4.2 Structural health deterioration due to fatigue

Eventually, cyclic loading can cause deterioration in bridge structures by in-

ducing fatigue in their material, and consequently impacting their health and

strength. Fatigue initiates and propagates damage locally, impacting the global

capacity of the structure and imposing limitations on the structure’s operation.

Figure 1.11a illustrates the reduction in residual strength due to damage growth,

such as crack size in metals Anderson (2017). The design life of a structure is

determined by its initial design strength and load, represented by the solid line

in Figure 1.11b. The shape of the curve varies based on the material type and

its properties. Failure occurs when the applied load surpasses the remaining

strength or damage tolerance. By reducing the applied load below the design

load, the durability and remaining life of the structure can be extended, as indi-

cated by the dotted line, and vice versa. The same principles apply to damaged

structures as well. Overall, the life of a structure can be prolonged by mini-

mizing damage growth, reducing applied loads, and implementing appropriate

maintenance and repair practices Yuan (2016).

Operational and environmental factors, along with uncertainties, however,

make it challenging to define structural health in terms of age and usage. To

maintain structural safety, continual in-service monitoring is essential, in order

to avert catastrophic failures such as the I35 highway bridge collapse Board and
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(a) Deterioration of material characteris-
tics.

(b) Extending remaining lifespan through
load reduction.

Figure 1.11: The residual strength of material undergoes variations over time Rob
(2021).

Board (2008). Eventually, a monitoring initiative is required to keep track of

the health of the structure and to perform prognosis studies to assess remaining

service (/fatigue) life. Mere visual inspection although necessary in this regard

yet is subjective and inaccurate Aktan et al. (1998), highlighting the need for

rigorous and more efficient health monitoring applications.

1.5 Fatigue life

With regards to the central idea of this thesis, the concept of fatigue life here

needs elaboration. According to ASTM (American Society for Testing Materi-

als), fatigue life is defined in terms of the number of stress cycles that a specimen

sustains before failure Stephens et al. (2000). For certain materials like steel and

titanium, there is a theoretical stress amplitude below which the material is ex-

pected not to fail regardless of the number of cycles, referred to as the fatigue

limit or endurance limit Bathias (1999). However, practical observations and ex-

tensive research conducted at higher cycle numbers indicate that fatigue limits

do not exist for metals Pyttel et al. (2011); Sonsino (2007).

The analysis of fatigue is commonly divided into two regions based on the

number of cycles to failure: low-cycle and high-cycle fatigue. However, recent

research has further divided fatigue into four sub-regions: very low cycle fatigue

(VLCF) < 102, low cycle fatigue (LCF) 103 − 105, high cycle fatigue (HCF)

106 − 107, and very high cycle fatigue (VHCF) > 107, which are distinguished

by different damage mechanisms Kim and Hwang (2019); Karunananda et al.
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(2012); Sharma et al. (2020). LCF and HCF failure is dominated by surface-

initiated cracks, while subsurface crack initiation predominates in VHCF Wang

et al. (2002).

1.5.1 Fatigue life prediction methods

Fatigue life prediction of a component or a system can be made through

various methods. Among them, two commonly adopted approaches are the

evaluation of fatigue damage and the prediction of the remaining life. The first

approach uses Wöhler curve (aka S-N curves), to characterize material fatigue.

These curves illustrate the stress (S)-cycles (N) relationship on a logarithmic

scale Burhan and Kim (2018). Tests on material samples, known as coupons

or specimens, apply sinusoidal stress to record cycles to failure. Coupon testing

determines fatigue behaviour, while component testing offers more accuracy but

limited generalizability Weibull (2013). Each test generates data points on the S-

N curve, contributing to the understanding of material fatigue properties. Data

censoring occurs if failure time exceeds the test duration. Statistical techniques

like survival analysis and linear regression analyze fatigue data, estimate failure

probabilities at different stress levels, and model stress-cycle relationships for

predictions.

The second approach utilizes fracture mechanics principles and applies the

crack growth equation to estimate the incremental growth of cracks with each

loading cycle. Safety factors are incorporated to address uncertainties and varia-

tions associated with fatigue. The prediction of crack growth rate often involves

subjecting a test specimen to multiple cycles of constant amplitude loading and

monitoring changes in compliance or crack growth on the specimen’s surface.

ASTM International has established standardized methods for measuring crack

growth rate Standard (2015).

The Paris-Erdoğan equation and similar crack growth equations are utilized

to estimate the remaining lifespan of a component. These equations allow for

the estimation of crack growth from an initial size of 10µm to failure, covering a

significant portion of the component’s fatigue life, including the initiation stage

of crack growth Murakami and Miller (2005). Parameters such as stress inten-

sity, J-integral, or crack tip opening displacement are commonly employed to

establish a relationship between the conditions at the crack tip of a component
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and those observed in test specimens. By aligning the crack tip conditions be-

tween the component and test specimens, valuable insights into the rate of crack

growth can be derived. One important advantage of crack growth methods is

their ability to predict the sizes of intermediate cracks. This information is valu-

able for scheduling inspections on a structure to ensure safety. In contrast, S-N

method only provide a life expectancy until failure without considering interme-

diate crack sizes. The S-N method is typically applied to small-scale, defect-free

specimens, whereas real-world assets often contain flaws and micro/macro cracks.

1.5.2 Prognostic approach for RUL estimation

According to Xiongzi et al. (2011), RUL refers to the time remaining until the

end of a component’s useful life. Predicting RUL plays a vital role in predictive

maintenance programs. Prognostic approaches provide insights into the safety,

reliability, and performance of a structure under different operational scenarios.

By assessing the current health state of the system, predicting damage growth,

and analyzing safety risks, these approaches can forecast the success or failure of

a process. Multidomain diagnostic techniques, such as system identification are

employed to quantify discrepancies between the physical system and its digital

representation. These discrepancies indicate damage or degradation and are

utilized to generate and update risk assessments and estimates of remaining life

as discussed by Saha et al. (2007). Comparing results from various operational

scenarios aids in identifying the most probable scenarios for achieving successful

processes.

The physical system undergoes maintenance or experiences changes in oper-

ating environments with the passage of time, which may invalidate the mathe-

matical model as a replica of the physical structure. As shown in Figure 1.12,

Bayesian inference techniques enable continuous updates of probability esti-

mates, ensuring that the model remains as a “digital twin” of the physical

system. Inverse methods are necessary to detect changes in physical systems

based on sensor measurements. By comparing simulated and measured parame-

ters, a model updater makes necessary adjustments to the mathematical model

and coefficients to restore agreement between the model and the physical struc-

ture Ross (2016).
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Figure 1.12: Bayesian inference improves accuracy over time with continuous proba-
bility updates.

1.6 System identification for RUL prediction

Field inspection plays a crucial role in detecting and preventing fatigue dam-

age in bridge components, as well as assessing the uncertainties associated with

fatigue processes and operational loading for the final assessment Ross (2016).

To supplement visual inspection, non-destructive evaluation/testing (NDE/T)

techniques such as dynamic testing, radiographic inspection, ultrasonic testing,

acoustic emission monitoring, and dye penetration testing are employed Pipinato

and Brühwiler (2022). However, these methods are reactive in nature and are

typically initiated when there are concerns about structural health. Further-

more, they can be time-consuming, costly, and labour-intensive, particularly for

large-scale bridges, resulting in significant downtime. The effectiveness of in-

spection programs depends on various factors, including the experience of the

inspector, the type of damage being observed, the chosen NDE technique, and

the potential presence of human bias Ross (2016). This highlights the necessity

for efficient, reliable, and automated inspection approaches, such as SHM.

1.6.1 Purpose of SHM

SHM involves implementing a strategy to identify damage and assess the

health of engineering structures by drawing inferences from the responses mea-

sured by an array of sensor networks over an extended duration. The primary

objective of long-term SHM is to provide real-time information about the struc-
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tural capacity considering the inevitable effects of ageing and degradation caused

by operational environments Farrar and Lieven (2007) and especially after ex-

treme events such as earthquakes or blast loading.

The objectives of an SHM strategy can be classified into five levels Farrar and

Worden (2007): detection, localization, classification, quantification, and prog-

nosis. Vibration-based damage SHM typically accomplishes the initial two levels

of SHM: detection and localization while for the next two stages (classification

and quantification), employment of a model becomes imperative. Prognosis, the

final stage of SHM demands information from all the previous four stages as well

as a predictive deterioration model and future estimates for operational loading.

Figure 1.13 showcases how advanced sensor networks and real-time data anal-

ysis tools can be utilized to evaluate the current condition of civil structures,

predict their remaining lifespan, and formulate effective repair strategies. SHM

aims to gather valuable information to optimize maintenance planning and en-

sure a dependable and cost-efficient operation. It is vital to continuously monitor

and assess the performance of structures and estimate their remaining useful life

for reliable operation and efficient maintenance and repair activities. Therefore,

it is crucial to integrate SHM strategies with life cycle management to fine-tune

structural assessment and predictions, facilitate optimal operational and main-

tenance practices, and prolong the lifespan of structures beyond their original

design expectations.

Using SHM techniques, the health status of a structure can be evaluated

by assessing damage extent and location, estimating residual strength, and an-

alyzing applied loads. The damage indicator (cf Figure 1.14), such as crack

length or fatigue cycles, can be devised to reflect the level of damage and resid-

ual strength Ross (2016). This indicator can be further periodically monitored

and forecasted against a safe threshold to ensure safety. However, this task is

not easy due to the presence of uncertainties in measurement, forcing, and/or

environmental factors.

1.6.2 Probabilistic health assessment

The uncertainties in SHM arise from various sources, including sensor noise,

ambient forcing, unaccounted environmental effects, sensor density, and model

inaccuracies. Neglecting these uncertainties can result in false predictions or di-
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Figure 1.13: Integrated framework for health monitoring and evaluation of civil struc-
ture.

Figure 1.14: Margin errors in measurements can result in significant uncertainties in
failure predictions.

vergence in estimations. The ideal SHM system aims to accurately detect dam-

age with true positive (TP) indications, while minimizing false positive (FP) val-

ues, which lead to costly and unnecessary inspections (cf. Figure 1.15). It should

also correctly differentiate true negative (TN) values indicating the absence of

damage and minimize false negative (FN) values, indicating missed damage that
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could result in catastrophic failure. Selecting a threshold value to distinguish

between damaged and undamaged states involves a trade-off between enhancing

safety by increasing the probability of detecting true damage (TP rate) or re-

ducing downtime and inspection costs by lowering the FP rate. Achieving both

simultaneously requires improvement in other aspects of the system Ross (2016).

Figure 1.15: Enhancing measurement precision enhances safety predictions.

Nevertheless, the performance of any SHM algorithm while dealing with all

uncertainties involved, mandates the problem to be defined in the probabilistic

domain. Probabilistic methods such as Bayesian updating/filter can be used in

this endeavour to deal with the unavoidable modelling inaccuracies or forcing

uncertainties and measurement uncertainties separately, as discussed in detail in

the following.

1.6.3 Bayesian filter

A Bayesian filter is a statistical estimator that employs Bayesian inference

to estimate and predict the state of a system. By combining prior knowledge

and observed data, the filter updates the probability distribution of the system’s

state. It continually adjusts its estimate as new measurements are obtained, con-

sidering both the measurement data and the underlying system dynamics. This

enables the filter to provide more accurate and reliable estimates for the states

by incorporating previous information and updating the probability distribution

accordingly.

Bayesian filtering requires a state space model/formulation, which refers to

the mathematical representation of dynamic systems in the probabilistic frame-

work (Chapman-Kolomogorov equation). These models describe the evolution
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of the dynamic systems in terms of state dynamics detailing the relationships

between the system’s inputs, outputs, and internal states. The probabilistic

framework, in the context of SHM, further allows to include the model inaccura-

cies or forcing uncertainties into this model in terms of process noise. The states

are however unobserved internal variables that are further observed through a

second equation, termed as measurement equation, wherein measurement uncer-

tainty due to sensor noise can additionally be included as a noise variable.

Among several existing Bayesian filters, Kalman filter Kalman (1960), in-

troduced by RE Kalman in 1960, is widely used for linear dynamic systems

and assumes the noise as stationary white Gaussian noise (SWGN). It provides

optimal estimation by recursively updating the state estimate based on mea-

surements and system dynamics. The extended Kalman filter (EKF), which

linearized the models about a current estimate, can be considered a nonlinear

variant of the Kalman filter. EKF uses Taylor series expansion and updates

the state estimate using nonlinear measurement equations. For the capability

to handle nonlinear systems, EKF can be employed for parameter (/input) esti-

mation which is inherently nonlinear due to the nonlinear relationship between

parameters (/inputs) and measurements. However, as the dimensionality and

nonlinearity increase, the performance of EKF can be affected by accumulated

errors from system linearization approximations. Moreover, EKF can deal with

mild non-Gaussianity, but when dealing with highly nonlinear systems, it may

run into accuracy and divergence issues.

The unscented Kalman Filter (UKF) was first presented by Julier et al. in

1995 to solve the EKF’s limitations. The unscented transform, which is used by

UKF, computes the statistics of random variables passing through a nonlinear

transformation Julier et al. (1995). In contrast to EKF, UKF uses sigma points

with the unscented transform, as introduced by Wan and Van Der Merwe (2000),

to approximate the mean and covariance of the updated variable more closely.

Because of this, UKF is considered to be a better nonlinear estimate procedure

than EKF.

Ensemble Kalman Filters (EnKF) is an ensemble-based approach that uti-

lizes a group of model states, called an ensemble, to estimate the system state. It

combines ensemble forecasting and Kalman filtering techniques to assimilate ob-

served data into a numerical model and estimate the state of a dynamic system.

In EnKF, the ensemble of model states evolves forward in time using system

dynamics and is then adjusted based on available observations. This ensemble-
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based approach offers increased reliability and adaptability in the presence of

model errors and uncertainties. EnKF is particularly suitable when working

with limited data and systems with significant nonlinearities. Additionally, due

to its parallelizability, EnKF can provide computational efficiency advantages

for high-dimensional systems Evensen (2003).

Particle Filter (PF), also referred to as Monte Carlo filter, is a non-parametric

filter that uses a collection of particles to represent the probability distribu-

tion Gordon et al. (1993). The weight of each particle reflects its likelihood. PF

calculates an estimate of the system state and its uncertainty by propagating and

resampling a set of particles based on system dynamics and observations. PF is

widely applicable and parallelizable. However, the large sample sets required for

optimal performance can make the system computationally expensive.

Although PF is known for its effectiveness in handling nonlinear problems,

its computational requirements have raised concerns. As a result, interacting

filtering techniques Karlsson et al. (2005); Sen and Bhattacharya (2016, 2017);

Zghal et al. (2014) have emerged as an alternative approach, aiming to reduce

the overall state dimension through an interactive strategy Zghal et al. (2014);

Sen et al. (2021). In these techniques, the parameters are estimated using PF,

while the state estimation is performed using either KF/EnKF, depending on the

linearity or nonlinearity of the process model Zghal et al. (2014). Each Bayesian

filter has its own strengths and is suitable for different system models and esti-

mation scenarios. The choice of filter depends on the specific characteristics of

the problem being addressed.

1.7 Research gap

Many approaches for estimating the fatigue life of civil infrastructures are

offline in nature Kwon et al. (2012); Adasooriya and Siriwardane (2014); Mo-

hammadi et al. (1998), requiring complete measured data to determine the Re-

maining Useful Life (RUL). In contrast, online algorithms provide flexibility by

utilizing data as it becomes available. Bayesian filtering-based approaches en-

able the use of prior information or beliefs about fatigue model parameters and

their evolution, even in the absence of measured data.

Typically, the Paris law model is used to represent fatigue crack propaga-
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tion. However, it is not suitable for typical bridge structures that experience

both tensile and compressive stresses in their members and joints. The Paris

Law assumption contradicts this behaviour. Under compressive stress, crack

propagation is reversed due to the crack closure effect. Therefore, the predictor

model must account for both effects to accurately estimate the fatigue life of a

bridge or its components.

To comprehensively investigate high-dimensional structures like bridges, nu-

merous sensors and costly high-dimensional support models are required to mon-

itor the entire domain Wu et al. (2019); Sharma and Sen (2021). This can

lead to computationally expensive, ill-posed problems, resulting in divergent

and sometimes infeasible results due to the processing of extensive sensor data

and computational demands of high-dimensional models. However, it is impor-

tant to note that fatigue is a localized weakening process that can be efficiently

monitored through localized monitoring Marques et al. (2018). By identifying

and independently monitoring the fatigue-critical subdomain, which represents

the area of interest, the expenses related to instrumentation and computation

can be reduced accordingly, while still estimating the RUL of the entire bridge.

1.7.1 Objectives and scope

The primary objective of this dissertation is to develop a precise and cost-

effective approach for predicting the RUL of civil infrastructures. To accomplish

this objective, the following specific objectives have been defined, focusing on

RUL estimation using SHM techniques, physical models, and filter-based tech-

niques.

1. Develop Bayesian filter-based algorithms for RUL estimation in the pres-

ence of cracks, utilizing available SHM data and incorporating model and

measurement uncertainties.

2. Create a fatigue life assessment technique based on substructure monitor-

ing, aiming to establish a distributed and cost-effective approach for fatigue

monitoring in structures without cracks.

3. Develop an RUL estimation approach specifically designed for substruc-

tures with visible cracks.
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4. Implement substructure-based SHM techniques considering vehicle-structure

interaction forces, enabling a direct approach for RUL estimation based on

vehicle counts without the need for expensive model simulations.

5. Validate the proposed approaches through numerical and real experiments,

emphasizing their application to bridge structures.

The scope of this research is to investigate and propose solutions for RUL

prediction in bridge infrastructures, focusing on crack detection, fatigue life as-

sessment, vehicle-induced loads, and component-wise monitoring through sub-

structuring. The proposed methods will be validated through rigorous experi-

mentation, with an emphasis on their practical implementation in bridge struc-

tures.

1.7.2 Organization of thesis

The thesis consists of seven purpose-driven chapters. Chapter 1 serves as

an introduction, addressing the problem statement, fatigue terminology, fatigue

life prediction methods, SHM, associated uncertainties, and the importance of

the Bayesian filter. The chapter also outlines the objectives of the thesis. The

second chapter conducts a comprehensive review of existing methodologies and

factors influencing fatigue life prediction for bridge structures. The significance

of an algorithm for automated SIF calculation and its validation is emphasized.

Chapter 3 focuses on the development of a filter-based real-time algorithm

for estimating RUL in the presence of cracks using available SHM data. This

chapter aims to provide a reliable method for predicting the remaining lifespan

of structures with cracks.

In the fourth chapter, a novel standalone substructure monitoring technique

is introduced, which allows for component-wise estimation of high dimensional

structures. The chapter provides a comprehensive overview and validation of

this technique, highlighting its effectiveness and accuracy.

The fifth chapter presents an improvisation of the proposed substructure es-

timation approach to address fatigue life estimation of a bridge structure with a

visible crack and available crack growth time history. The dissertation also dis-

cusses similar studies and relevant improvisations for RUL estimation in bridge
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structures where the crack may be absent, visible, or measurable in its sixth

chapter. This chapter explores various scenarios and adapts the proposed algo-

rithms accordingly. For all the proposed algorithms, extensive validation studies

through numerical and real experiments have been undertaken whenever nec-

essary, demonstrating their effectiveness, accuracy, precision, and promptness.

The algorithms’ noise sensitivity, robustness against force, and damage severity

are also evaluated.

Finally, Chapter 7 summarizes the research findings, discusses the challenges

encountered during the study, and suggests potential future research avenues.

This chapter provides a comprehensive conclusion to the thesis, highlighting the

contributions made and areas for further exploration.

1.7.3 Major contributions

This dissertation contributes to the field of prognostics by proposing a method

for predicting the RUL of bridge structures using the SHM framework. The key

contributions of this research are outlined below:

• Development of an online model-based real-time prognosis algorithm pow-

ered by a Joint-Extended Kalman filter (JEKF) estimation approach. This

algorithm enables the prediction of the service life of structural components

based on available data, facilitating proactive maintenance and optimal re-

source allocation.

• Introduction of a substructure technique for component-wise monitoring

to reduce computational workload and instrumentation requirements. By

employing an Interacting Particle-Ensemble Kalman filters (IPEnKF) al-

gorithm Aswal et al. (2021b) and an output injection technique Zhang and

Zhang (2018); Sen et al. (2021), the proposed approach isolates the sub-

domain of interest for health estimation without the need to consider the

rest of the structure.

• Application of the substructure estimation approach to reconstruct forces

at the substructure boundary under vehicle-induced vibration, and further

estimate the fatigue life using the crack growth time history. By considering

the dynamic effects of vehicles, the algorithm provides a comprehensive

understanding of fatigue behaviour under realistic operational scenarios.
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• Integration of component-wise health assessment framework to real-time

RUL estimation that focuses specifically on the fatigue-critical location

and estimates the fatigue life of the structure conditioned on the current

health state even in the absence of cracks.

Finally, this research offers novel methods and techniques for RUL prediction

and fatigue life assessment, enhancing the field of structural prognostics and en-

abling informed decision-making for the maintenance and management of bridge

structures.
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Chapter 2

Integrating SHM techniques and

numerical SIF simulation for

fatigue analysis in structures

In order to achieve the overarching goal of accurately predicting the service

life of civil structures, I have set specific objectives that will be addressed in

each chapter. To ensure accuracy, the most effective approach is to enhance

your understanding and explore various methods for predicting the fatigue life of

structures. Additionally, it is important to understand the factors that influence

fatigue life, such as SIF, temperature, and random loading. Lastly, an automated

approach is devised to calculate SIFs for complex systems without demanding

complete fracture mechanics simulation. The same is validated using standard

and complex specimens under mechanical and thermomechanical loadings.

2.1 Standard fatigue analysis methods

Two major factors have been observed to be impactful in the improvement

of fatigue analysis techniques. Of them, the first one is allowing designers and

engineers useful, simple-to-implement, affordable approaches to fatigue analysis,

and the second one is to assure the practicality of the employed approach in

matching the actual observation data. Fatigue processes are typically divided

into two distinct stages: initiation and propagation. There exist well-established

methods to monitor fatigue within each of these stages. In this regard, the

stress-life (S-N), strain-life (ϵ-N), and fracture mechanics approaches for fatigue
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analysis are discussed in this chapter. Although there is considerable overlap

between these strategies, each has a distinct application area Ye et al. (2014).

2.1.1 Stress-life (S-N) approach

The stress-life approach is commonly used to predict long fatigue life when

stresses and strains remain within the elastic range. This approach disregards

the differentiation between crack initiation and propagation and instead focuses

on the overall lifespan or time to failure of a structural component. It relies on S-

N curves, which depict the relationship between stress range and fatigue failure.

These curves are generated by subjecting the test materials to repeated applica-

tions of constant-amplitude stresses until visible cracking occurs. To construct

these curves, numerous experiments are conducted on the material under consid-

eration, subjecting it to various stress levels. However, conducting fatigue tests

can be expensive and time-consuming, and incorporating the resulting fatigue

data into curves also requires a significant amount of time.

To address these challenges, fatigue analytical models have been developed

to combine theoretical concepts with observed data, enabling more accurate

predictions for future observations. Wöhler’s original research made significant

contributions to the investigation of fatigue failure in railway axles and the es-

timation of fatigue strength based on experimental data, particularly for the

German Railway Industry. His work established the connection between applied

stress, cycles to failure, and the concept of fatigue limit, further enhancing the

understanding of fatigue behaviour across different materials Al-Rubaie (2008).

Several S-N approaches are commonly employed for predicting fatigue life,

distinguished by the stress analysis of the structural details. The three funda-

mental types are the nominal stress approach, hot spot stress approach, and

effective notch stress approach Fricke (2003); Radaj (1996).

Nominal stress approach

The nominal stress approach is widely used to assess fatigue life in steel

bridges and is incorporated in contemporary codes and standards Standard

(1980); on Bridges (1990). This approach considers the average stress within the

component cross-section, focusing on overall stress distribution, including high
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stress around welded joints. However, it does not consider local stress variations.

The nominal stress determination/computation is typically carried out by any

standard methods, for instance, finite element modelling analysis or linear elastic

structural mechanics. Accurate measurement can be achieved by strategically

placing strain gauges outside the stress concentration field of the welded joint.

Despite its wide usage, the nominal stress approach has its own limitations. It

may not be suitable for cases of challenging load characterization and complex

structural joints Xiao and Yamada (2004). It also overlooks the dimensional

fluctuations in specific structural features, impacting the accuracy of fatigue life

predictions Poutiainen et al. (2004). Caution should be exercised when applying

the nominal stress approach to certain steel bridge elements, as concerns about

prediction accuracy may arise.

Due to the above limitations, alternative strategies like hot spot stress or

effective notch stress approaches can be considered when the issues of load char-

acterization, complex geometry etc. arise. These techniques provide more pre-

cise evaluations of complex features and account for stress concentration effects.

While the nominal stress approach is frequently used, its accuracy and suitability

for specific bridge components should be thoroughly examined and evaluated.

Hot spot stress approach

The hot spot stress approach offers higher precision compared to nominal

stress analysis when conducting fatigue analysis of complex welded connec-

tions. Guidelines and recommendations provided by the International Institute

of Welding assist in accurately determining hot spot stress in welded connections.

Steel bridges consist of various welded plate-type structural components, such as

longitudinal and transverse ribs, floor beams and stringers, and joints between

main girders and floor beams. Extensive research on the fatigue behaviour of

welded joints and the foundations of fatigue strength measurement have com-

binedly resulted in the development of design guidelines and applications Gurney

(1979); van Delft (1981); Hobbacher et al. (2016).

In the hot spot stress approach, fatigue cracks are prone to initiate at weld

toes, which experience the highest local pressures. Determining the hot spot

stress involves multiplying the nominal stress by the stress concentration fac-

tor (SCF), wherein SCF is obtained can be obtained through finite element
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analysis, strain gauge measurements, or empirical methods Pilkey and Pilkey

(1997). Finite element methods(FEM) facilitate the estimation of SCFs by pro-

viding precise information on the positions, orientations, and magnitudes of high

stresses. Strain gauges play a vital role in accurately measuring the SCF, requir-

ing careful placement optimization based on finite element simulations of typical

details Kaczinski et al. (1997); Barth and Bowman (2001); Tsakopoulos and

Fisher (2002); Connor (2004); Al-Emrani (2005); Connor and Fisher (2006).

Various approaches and techniques, considering stress gradients and nonlin-

earities, have been proposed to assess hot spot stress at different welded joints.

Early studies focused on relating fatigue strength to local stress near the weld toe

and have a longstanding history in evaluating hot spot stress for fatigue Radaj

(1996). Over time, the hot spot stress approach has gained wider acceptance

and is encouraged in national and international codes and standards Committee

et al. (1994); API (2005); IIW (2000); File (1998). While the application of this

approach to predict fatigue life and design in different welded steel structures

has received less attention, its use in evaluating fatigue in welded plate joints

within steel structures, particularly cable-supported steel bridges, has generated

significant interest Chan et al. (2005, 2003).

Effective Notch Stress Approach

The effective notch stress approach offers an alternative strategy for pre-

dicting the initiation life of a crack at the root of a notch, specifically in the

high-cycle regime. Radaj et al. (2006); Radaj (1990) developed this approach,

focusing on fracture initiation and early growth in the high-cycle regime. Zhang

and Richter (2000) proposed novel strategies for numerically predicting fatigue

life in spot-welded structures, considering the interaction between notch stress

and SIF.

Sonsino et al. (2012) explored the applicability of the notch stress concept in

different industrial sectors, using reference radii of 1 mm for thick-walled con-

nections and 0.05 mm for thin-walled welded steel connections. Aygül et al.

(2013) conducted a comparative study on widely used welded joints in steel

bridges, evaluating the accuracy of nominal, hot spot, and effective notch stress

approaches. The results indicated that the effective notch stress approach only

marginally improved fatigue strength calculations despite requiring a more com-

plex modeling effort in computation.
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2.1.2 Fracture mechanics approach

The fracture mechanics approach is commonly used to estimate the propaga-

tion life of an initial crack. Linear elastic fracture mechanics (LEFM) connects

the growth of a crack with the number of fatigue cycles, allowing engineers and

researchers to study crack behaviour and predict its progression over time. This

enables the estimation of fatigue life and helps in designing stronger and safer

structures. Paris’ law is a widely used tool in fatigue research for calculating

fracture growth rates Paris (1963).

The application of fracture mechanics techniques in assessing bridge fatigue

conditions has been extensively studied. Fisher (1984) examined fatigue crack

occurrences in steel bridges using fracture mechanics concepts and case studies.

Agerskov and Nielsen (1999) investigated fatigue damage accumulation in steel

bridges under random loads, utilizing the fracture mechanics approach to cal-

culate the fatigue life of welded joints in highway bridges. MacDougall et al.

(2006) compared the impact of different vehicle types on fatigue life, specifically

for short-span and medium-span bridges, using a LEFM model. Xiao et al.

(2006) combined experimental data from the Kinuura Bridge with LEFM-based

theoretical predictions, highlighting the significant reduction in fatigue strength

of butt-welded joints due to the presence of 2− 3 mm lack of penetration zones.

These studies demonstrate the importance of fracture mechanics in under-

standing and evaluating fatigue-related issues in steel bridges. By incorporating

fracture mechanics concepts and considering factors such as stress, vehicle char-

acteristics, and weld quality, researchers have gained insights into fatigue crack

development and the fatigue life of welded joints. The findings contribute to the

enhancement of steel bridge design, maintenance procedures, and the develop-

ment of reliable fatigue evaluation methodologies.

2.1.3 Strain-life (ϵ-N) approach

The strain-life approach, developed in the 1960s, primarily focuses on the

fracture initiation phase of fatigue analysis. It is particularly suitable for ma-

terials experiencing plasticity, indicating behaviour beyond pure elasticity. The

ϵ-N approach is highly relevant for LCF scenarios characterized by relatively

short fatigue lives. Some research has been conducted to explore the applica-
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tion of the ϵ-N approach in evaluating the fatigue performance of steel bridges

through LCF testing and theoretical calculations Ge et al. (2013); Sakano and

Wahab (2001).

However, the use of the ϵ-N approach for assessing the fatigue life of steel

bridges has received limited attention compared to other fatigue analysis tech-

niques. This is mainly because HCF rather than LCF is the dominant factor

contributing to fatigue issues in steel bridges. Nonetheless, certain studies have

focused on ϵ-N fatigue data obtained from historic Portuguese metallic riveted

bridges. De Jesus et al. (2011) examined the fracture propagation fatigue data

of these bridges, employing probabilistic and deterministic models to correlate

the ϵ-N fatigue data. Nevertheless, the application of the ϵ-N approach in fa-

tigue assessment for steel bridges remains relatively underutilized compared to

alternative techniques.

2.1.4 Field measurement data

Obtaining accurate load and resistance information is essential for fatigue

assessment in the S-N approach for evaluating and predicting bridge fatigue

damage. Even a slight change in the stress range when using live load stresses

in cubic equations Sartor et al. (1999) might result in very different fatigue

evaluation outcomes. Properly accounting for all factors in a typical analysis

can pose challenges due to the inability of computational models and simulations

to accurately capture the variations in stress range experienced by a structural

element. Field measurement is required to gather accurate information that

takes these variables into account.

Field measurement entails attaching sensors to bridge components in order to

directly measure and record the stresses and stress distributions that the struc-

tural component really experiences. Given that it considers the conditions and

variations found in real-world settings, this method offers the most straightfor-

ward and accurate basis for fatigue assessment. A comprehensive examination of

fatigue analysis methods for bridge structures that rely on field-measured data.

Specifically, it discusses the application of NDT, such as NDE and SHM tech-

niques. Engineers can improve fatigue assessment and life prediction by using

field-measured data to acquire more precise and reliable information about the

real loads and stress that bridge structures experience Ye et al. (2014).
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2.1.5 Fatigue life assessment using NDE techniques

Many existing structures need to be strengthened, repaired, or rebuilt due to

rising traffic volumes, greater truck weights, and deteriorating bridge conditions

in order to guarantee an adequate degree of safety when taking into account the

present and future traffic conditions Zhao and Haldar (1996). NDE technology

has emerged as a means to enhance the accuracy of bridge condition assessment,

particularly in situations where financial constraints and the high costs associ-

ated with reconstruction are a concern Russo et al. (2000). When assessing the

fatigue condition of bridges, it is common to employ load-controlled diagnostic

testing under typical traffic loads as an evaluation technique. These techniques

are frequently complemented by the utilization of sensors and data collection

systems.

The benefit of using known loadings in load-controlled diagnostic testing is

that bridge response can be roughly quantified and a thorough baseline model

may be established. However, it takes longer to set up, requires traffic man-

agement while being tested, and only captures a moment in time. Monitor-

ing through the use of NDT techniques offers advantages such as not requiring

traffic control, quick setup, and the ability to record responses resulting from

background traffic. This approach provides statistical data on actual responses

over time, offering valuable insights into structural behaviour. However, it is

important to note that NDE, as a short-term in-service monitoring technique,

provides limited information for a comprehensive evaluation of bridge parame-

ters. Additionally, it does not capture specific details related to truck loadings,

which can be crucial for a thorough analysis Chajes et al. (2000).

NDE techniques have been used in a number of investigations on bridge fa-

tigue assessments. These studies evaluated the fatigue life Hahin et al. (1993),

condition, and remaining lifespan of bridges under real traffic loads using field

strain data, portable computer-based strain gauge data gathering systems De-

Wolf et al. (2002), strain monitoring at important places, and field measure-

ments. The identification of maintenance, repair, and replacement solutions for

bridge infrastructure Chakraborty and DeWolf (2006) has been made possible

by the application of NDE techniques. Numerous studies have reviewed diag-

nostic load testing, repair techniques, and strengthening schemes based on field

measurements and laboratory tests to address the issue of distortion-induced

fatigue Ermopoulos and Spyrakos (2006).
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NDE techniques have been applied by researchers like Hahin et al. (1993), De-

Wolf et al. (2002), Chakraborty and DeWolf (2006), Ermopoulos and Spyrakos

(2006), Moses et al. (1994), Spyrakos et al. (2004), and Alampalli and Lund

(2006) to the field of fatigue evaluation of steel bridges, furthering our under-

standing and management of bridge infrastructure.

2.1.6 Fatigue life assessment using SHM techniques

SHM, being an advanced and continuous version of NDE testing, is becoming

more widely recognized Pines and Aktan (2002); Casciati (2003) for its ability

to maintain the structural integrity and safety of bridges throughout their whole

lives. SHM provides advance notice of degradation or damage, allowing prompt

repairs and avoiding catastrophic collapses. Due to their significant financial

outlays, economic importance, creative design, and construction methods, com-

puter, and sensor-based SHM systems have witnessed an increase in popularity

when it comes to being integrated into bridges, particularly long-span bridges.

Monitoring the structural performance and health of bridges while precisely pre-

dicting fatigue state and remaining lifespan is one of the important roles of SHM

systems. On the other hand, there hasn’t been much research on analyzing

fatigue and assessing conditions based on long-term monitoring data. The rela-

tive novelty of SHM technology in civil engineering, the absence of agreed-upon

definitions and design standards, and the high implementation costs have all

hindered its widespread acceptance Ye et al. (2014); Chan et al. (2001).

Several research studies have concentrated on fatigue analysis and condition

assessment based on SHM techniques. These research studies used SHM data

from notable bridges such as the Tsing Ma Bridge Chan et al. (2001) and the

Bronx-Whitestone Bridge Connor et al. (2003) to develop methodologies and

strategies for fatigue life prediction. They have incorporated important factors

such as wind effects and structural components to assess long-term fatigue dam-

age caused by buffeting in suspension bridges, employing specific methodologies

for fatigue damage assessment. Additionally, conventional daily stress spectrum

methods have been employed to evaluate the fatigue life of bridges, including

the Tsing Ma Bridge Radaj et al. (2006). These studies demonstrate the possi-

bilities of using long-term SHM monitoring data for fatigue analysis and bridge

condition evaluation.
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2.2 RUL prediction using SHM techniques

The commonly used fatigue analysis methodologies for evaluating fatigue life

and RUL of structures are discussed in the existing approaches Ye et al. (2012);

Marques et al. (2018). Based on the presence or the absence of a crack in the

civil structure, methodologies are classified into two specific categories as follows:

1. RUL prediction using the S-N approach (assuming crack attributes are

either not available or visible)

2. RUL prediction using the fracture mechanics approach (when the crack is

visible and its growth time history is available)

2.2.1 RUL prediction using the S-N approach

To ensure the safety of structures in hard-to-reach areas, a traditional method

is to use the safe life design approach, which aims to prevent structural failure

caused by fatigue. This approach operates under the assumption that there are

no fatigue cracks in the structure during its expected lifespan for safe opera-

tion Kim et al. (2006). In the cases where the structure appears to be in good

condition, fatigue life estimation is straightforward through the employment of

a cumulative damage approach, which relies on the S-N curve for the compo-

nent material. For monitoring structural health, stress history data is utilized

from the SHM technique. Techniques such as rain flow analysis are employed to

simplify complex stress history data into a sequence of simple cyclic stress data.

Based on the outcomes of the rain flow analysis, a histogram of cyclic stress is

generated to construct a fatigue damage spectrum. The cumulative damage level

for each stress level is established by referencing the S-N curve. The individual

contributions are consolidated by applying the cumulative damage approach. By

following these steps (cf. Figure 2.1), the fatigue life of each structural element

can be assessed in terms of fatigue damage, taking into account the complex and

varying loading conditions experienced by civil structures.
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Figure 2.1: Generic procedure for estimating both the safe fatigue life and RUL using
two different approaches.

Cumulative damage approach under random loading

Civil structures experience a range of complex and random load patterns, en-

compassing both substantial and minor loads. To determine the reliable fatigue

life of such a component using S-N methods, the typical cumulative damage

approach has been used.

Basquin and Coffin-Manson fatigue life models are considered empirical meth-

ods since they involve curve fitting two parameters based on SN data. On the

other hand, Cumulative Damage Model (CDM) takes into account environmen-

tal and physical factors that affect fatigue behaviour. In this model, it is assumed

that a component undergoes deformation and experiences “damage.” This dam-

age is a measurable quantity, and the CDM determines how much damage is

needed for a component to fail under specific conditions Celli (2021). The equa-

tion provides a general form for the CDM approach.
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n∑
i=1

Di

Df,i

= 1 (2.1)

This approach assumes that the ratio of discrete damage events (Di) to the

total damage required to cause fracture for a specific load condition (Df,i) is

considered. When the sum of these ratios, calculated for a total of n events,

reaches 1, it indicates the occurrence of failure or fatigue fracture.

One of the simplest and earliest widely used methods for fatigue analysis

and prediction is commonly known as Miner’s rule. Originally proposed by

A. Palmgren but popularized by M. A. Miner, this approach considers a linear

combination of overstress cycles (ni) and the corresponding cycle life at the same

overstress level (i), as described in Equation (2.2) Miner (1945); Metallurgy

(1986).

k∑
i=1

ni

Ni

=
n1

N1

+
n2

N2

+ · · · +
nk

Nk

= 1 (2.2)

Miner’s rule operates under the assumption that all stress cycles Ni are refer-

enced to the original, healthy curve. In other words, if a component is subjected

to a stress cycle and becomes damaged, resulting in a shift in its S-N curve,

Miner’s rule still considers the original S-N curve as the reference point. This

means that the rule does not account for the cumulative damage caused by each

subsequent cycle or the fact that the component has undergone deterioration.

Miner’s rule treats each stress cycle independently and assumes that the order in

which the loads are applied is irrelevant. It does not consider the accumulated

damage resulting from previous cycles or the altered S-N curve due to the degra-

dation of component Therefore, the method of calculating the total damage of

an item based on Miner’s rule does not take into account the deterioration or

the sequential effects of cyclic loading.

2.2.2 RUL prediction using the fracture mechanics ap-

proach

Fatigue life prediction of a critical component of structural health manage-

ment systems, particularly when dealing with cracks. In the cases of fatigue
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crack damage in metallic materials, Paris’s Law Paris (1963) is commonly used

to estimate the crack growth rate, as demonstrated in Equation (2.3):

da

dN
= C(∆K)m (2.3)

where a represents the characteristic crack length, N denotes the number of

fatigue loading cycles, da/dN is the rate of crack growth and m and C are the

model parameters of Paris’ law that are material-specific constants. Lastly, ∆K

refers to the range of SIF. Even though the number of cycles is an integer, it is

treated as a real number because the crack grows over a large number of cycles.

The values of C and m are typically obtained through experimental methods.

By plotting the growth rate against the SIF on a log-log scale, the slope of the

line corresponds to m, and the y-intercept at ∆K = 1 corresponds to C. To

calculate the range of SIF, one can find the difference between the maximum and

minimum SIFs (i.e., ∆K = Kmax - Kmin). Newman’s approximation Newman Jr

and Raju (1981) can be used to estimate the SIF range as:

∆K = ∆S Y (a)
√
πa (2.4)

The range of applied nominal stress, denoted by ∆S (i.e., stress located

far from the crack tip), and the dimensionless geometry function Y (a) (which

relies on the geometry around the crack) are involved in the above equation.

Equation (2.3) can be utilized to evaluate the fatigue life of a structure (cf.

Figure 2.1). The differential Equation (2.3) can be solved to determine the

crack length as:

ak+1 = ak + C(∆K)m∆N (2.5)

However, instability arises in situations where the maximum SIF reaches

a critical SIF value (KIC) or when the crack size reaches a critical threshold

(ac). Using the SHM system, it is possible to detect the initial crack length ak.

Then Equation (2.5) can be used to predict the crack size ak+1 after ∆N cycles,

starting from an initial crack size of ak, assuming that the model parameters C

and m are known.

In addition to these primary factors, there are various other variables that can
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influence fatigue, such as stress concentration, corrosion, temperature, overload,

and more. Fatigue cracks typically initiate at the surface, making the condition

of the loaded component surface critical to its fatigue life. Surface roughness

plays a significant role as it directly affects the level and number of stress con-

centrations on the surface. Higher stress concentrations increase the likelihood

of crack initiation, while smoother surfaces delay nucleation. Notches, scratches,

and other stress risers decrease fatigue life. This study focuses on fatigue life

predictions considering a limited number of factors, including random loading,

stress concentration, and thermomechanical loading caused by temperature.

2.3 Crack modelling with eXtended Finite El-

ement Method (XFEM)

Traditionally, standalone ABAQUS-XFEM modules are employed Baptista

et al. (2018) to model crack and its propagation targeting fatigue life estimation

for simple as well as complex structures. Unfortunately, the procedure lacks the

flexibility to assign Paris law parameters and to control the critical parameters

of crack propagation.

Focusing on the computational cost, the majority of the research works deal-

ing with such problems employed a quasi-static approach provided by Dhondt

(2014). In this approach, the SIF for the various crack opening modes must be

calculated for an initial crack. In the current work, the quasi-static crack growth

model is employed for crack propagation. Eventually, with this approach, the

crack geometry can be recursively updated, and the process can be repeated for

each time step. Shi et al. (2010) suggested that the domain does not need to

be re-meshed in each iteration and thereby reducing the computational expense

provided the mesh around the crack tip is fine enough to ensure precision in the

calculated SIF.

To execute the quasi-static approach, the present study utilizes XFEM in

the ABAQUS package to calculate the SIF. The approximation of the primary

variable is further enriched with additional mathematical functions for the com-

pleteness and accuracy of the solution. The enrichment has been employed with

a partition of unity characteristics. Displacement-based approximation with en-

riched function can be written as,
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u(x) =
n∑

i=1

Ni(x)

[
ui + H(x)ai +

4∑
α=1

Fα(x)bαi

]
(2.6)

where Ni(x) and ui are the nodal shape functions and nodal displacement vec-

tors, respectively, connected with the continuous part of the finite element so-

lution. ai represents the nodal enriched degree of freedom (dof ) and H(x) rep-

resents the discontinuous jump function across the crack surfaces. bi is the

nodal-enriched dof vector with its associated elastic asymptotic crack-tip func-

tions Fα(x). Here, the H(x) function has a value +1/-1 for above or below the

crack surface. This function is defined for those elements that are completely cut

by the crack and able to capture strong discontinuity due to the crack surface.

The tip enrichment function is defined for those elements which are partially cut

by the crack and have a singularity in the stress field. For isotropic media, the

crack tip enrichment functions are given in terms of polar coordinates (r,θ) with

its origin at the crack tip as,

Fα(x) =

[√
rsin

θ

2
,
√
rcos

θ

2
,
√
rsinθsin

θ

2
,
√
rsinθcos

θ

2

]
(2.7)

The crack model is simulated to obtain SIF parameters which are subse-

quently used to model quasi-static fatigue crack growth. In general, crack growth

direction (θ) is obtained by Maximum Tangential Stress (MTS) criterion which

assumes that the crack may grow in a direction perpendicular to the maximum

principal stress. Therefore, for each small crack increment, θ corresponding to

the applied load can be obtained following MTS criteria given by Erdogan and

Sih (1963). Consequently, the associated crack driving force (i.e., ∆Keq) can

also be calculated as,

θ = 2tan−1

1

4

 ∆KI

∆KII

±

√(
∆KI

∆KII

)2

+ 8


∆Keq = ∆KIcos

3 θ

2
− 3∆KIIsin

θ

2
cos2

θ

2

∆KI = [KI ]max − [KI ]min

∆KII = [KII ]max − [KII ]min

(2.8)

with [KI ]max and [KII ]max are the SIFs in mode I and II with respect to maximum
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applied load under cyclic fatigue loading conditions. In the same way, [KI ]min

and [KII ]min are the SIFs in mode I and II with respect to the minimum applied

load. With this direction and driving force, the ABAQUS model is updated with

this redefined crack font, and iterations are continued till the critical conditions,

yielding a series of SIFs corresponding to various crack sizes.

ABAQUS software includes the capability to calculate the J-integral, which

is a parameter used to determine the strain energy release rate or the work per

unit fracture surface area in a material. The concept of J-integral was indepen-

dently developed by Cheperanov (1967); Rice (1968). It represents an energetic

contour path integral (denoted as J) that remains constant around a crack. The

J-integral is widely accepted in fracture mechanics and provides insights into

the energy release associated with crack growth. It serves as a measure of de-

formation intensity at a notch or crack tip, particularly for nonlinear materials,

and can be correlated with SIF in linear materials. The relationship between

the J-integral and ∆Keq is expressed as follows:

J =


∆K2

eq

E
(Plane stress)

∆K2
eq

E
(1 − ν2) (Plane strain)

(2.9)

where E represents the elastic modulus and ν denotes the Poisson’s ratio of the

material. Accurate numerical evaluation of J-integral holds great significance for

practical applications of fracture mechanics in design calculations. ABAQUS/S-

tandard includes a procedure for evaluating the J using the virtual crack exten-

sion/domain integral methods introduced by Parks (1977) and further developed

by Shih et al. (1986).

41



2.4 Automated calculation of SIF

Automated calculation of SIF

Complex geometries often encountered in civil structures present a chal-

lenge because while SIFs for simpler geometries are available in the lit-

erature, the same is not true for complex geometries. Calculating SIFs

for various crack sizes necessitates modeling the structure multiple times,

adjusting the crack growth direction and size each time, which is a time-

consuming process.

To simplify and expedite this process, an automated method for cal-

culating SIFs (for different crack sizes) is employed, utilizing a combination

of ABAQUS, Python, and MATLAB in this study.

This algorithm begins by creating an initial model with structural

and crack details in ABAQUS and then translating this information into

a Python script. Subsequently, this Python script is employed to update

the model and generate a new Python script based on the modified crack

length values. The initial model undergoes analysis, and the SIF calcu-

lations using KI and KII (referred to as ABAQUS-K) and those using J

(referred to as ABAQUS-J) are transferred to MATLAB. The crack growth

direction θ and the new crack length are computed using MATLAB and a

new Python script is created (see Figure 2.2).

To automate this process, the initial Python script is used as a func-

tion file in MATLAB. It is updated based on the initial data, generating

new Python scripts recursively. This enables the simulation of SIFs within

the ABAQUS environment under specified conditions. This newly gener-

ated Python script is then utilized to run the ABAQUS model, calculating

another new crack growth direction, determining another new crack length,

and generating yet another new Python script.

This iterative process continues until the crack length reaches a criti-

cal value. By integrating ABAQUS, Python, and MATLAB, this approach

automates the iterative modeling and analysis, streamlining the efficient

computation of SIFs and facilitating crack growth simulations.
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Figure 2.2: Flowchart of the algorithm to calculate SIF.

2.5 Numerical validation of the proposed SIF

calculation

This study heavily relies on numerically simulated SIFs for simulating crack

growth under different crack geometries and operational conditions. Eventually,

it is essential to validate these SIF measures against corresponding benchmarks

to ensure their reliability. To accomplish this, separate models of a finite homo-

geneous plate with edge and centre cracks are created. In the edge crack model,

a square plate with a width (b) and height (2h) of 50 mm each is modelled, with

a uniform thickness of 9 mm. A crack of length (a) 5 mm is positioned at the

left edge of the plate. The elastic modulus is assumed to be 71, 700 MPa, and

the Poisson’s ratio is 0.33. The bottom edge of the plate is constrained only in

the y-direction, and a tensile load of 36 kN is applied at the opposite edge.

Similarly, for the centre crack problem, a square plate with equal width (2b)

and height (2h) of 50 mm is considered, with a centrally located crack of width

(2a) of 5 mm. The other material properties remain the same as in the edge crack

problem. A schematic diagram illustrating the boundary conditions is presented

in Figure 2.3. SIFs are obtained using automated calculation of SIF technique

2.4 for crack sizes ranging from 5 mm to 40 mm, with a 2 mm increment.
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(a) Edge crack (b) centre crack

Figure 2.3: Crack domain for standard specimen under mechanical loading.

2.5.1 Mesh convergence study

To validate the accuracy of the proposed algorithm, mesh convergence studies

were conducted to assess the finite element solutions. The simulation uses an

8-node linear brick element (C3D8R). An initial discrete finite element mesh size

of 20 is being considered in relation to the width of the center crack specimen.

Moreover, it was extended up to the point where the solution converges to an

acceptable error level with a stable value, as shown in Figure 2.4. The optimal

discrete finite element mesh size is 100 with the total number of elements and

nodes as 1, 80, 000 and 3, 94, 022 respectively. In subsequent simulations, the

same mesh size is used to calculate the SIFs.
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Figure 2.4: Mesh convergence test for centre crack under mechanical loading
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2.5.2 Mechanical loading

The proposed algorithm is applied to calculate the SIFs for both edge and

centre cracks under mechanical loading conditions. Considering the potential

occurrence of mode-I failure, the numerically obtained SIFs are compared to

the benchmark values provided by Tada et al. (2000). Figure 2.5 presents the

comparison results for both edge and centre cracks. It is evident from the results

that the simulated mode I SIFs (KI in MPa
√
m) exhibit a strong agreement

with the analytical values.

(a) Edge crack (b) centre crack

Figure 2.5: SIF calculation for standard specimen under mechanical loading.

Furthermore, a comparative analysis is conducted between the SIF calcula-

tions using two methods: ABAQUS-K and ABAQUS-J . The comparison reveals

that ABAQUS-K yields significantly closer results to the analytical values for

both the edge and centre crack scenarios.

The same approach is further applied to a complex specimen with similar

material properties subjected to mechanical loading, as illustrated in Figure 2.6.

Since an analytical formulation is not available for this complex specimen, a com-

parison is only conducted between the ABAQUS-K and ABAQUS-J methods,

revealing minor differences in their patterns Figure 2.7. Consequently, the pro-

posed algorithm facilitates the automated calculation of SIFs for both standard

and complex specimens.

2.5.3 Thermo-mechanical loading

The efficacy of the algorithm is validated for thermo-mechanical loading con-

ditions. Using Section 2.4, SIFs specific to this loading type have been computed
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(a) Edge crack with holes. (b) centre crack with holes.

Figure 2.6: Crack domain for complex specimen under mechanical loading.

(a) Edge crack with holes. (b) centre crack with holes.

Figure 2.7: SIF calculation for complex specimen under mechanical loading.

as before. In this process, thermo-mechanical loading is created by superimpos-

ing the mechanical and thermal loading as presented in Figure 2.8. A similar

finite plate, as in the earlier experiment, is considered with a similar bound-

ary and loading condition with the initial crack length of 5 mm. The material

properties are assumed to vary with temperature and the respective functional

relationship is defined following the references Reddy and Chin (1998); Zhu

et al. (2019).

Considering typical Indian tropical climatic conditions, the ambient temper-

ature has been realistically assumed to lie in between 25 ◦C to 50 ◦C. The

initial temperature of the specimen is fixed at T1 = 50 ◦C, which is then reduced

to T2 = 25 ◦C, resulting in a temperature difference of ∆T = T2 − T1. This
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= +
(a) Thermo-mechanical (b) Mechanical (c) Thermal

Figure 2.8: Superposition of SIF with mechanical and thermal loading to determine
the thermo-mechanical loading.

temperature reduction induces tensile stress within the plate.

A similar process was performed to calculate SIFs under thermo-mechanical

loading conditions, and the corresponding results are depicted in Figure 2.9. The

results appeared to be similar to the earlier experiment demonstrating the fact

that the proposed algorithm is equally efficient for both loading scenarios.

(a) Edge crack (b) centre crack

Figure 2.9: SIF calculation under thermo-mechanical loading.

2.6 Summary

Standard fatigue analysis methods have evolved over time to meet the re-

quirements of designers and engineers, aiming for simplicity, affordability, and

accuracy. Fatigue analysis in bridge structures commonly employs S-N, ϵ-N,

and fracture mechanics approaches. Field measurement data obtained through
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sensors and non-destructive testing techniques play a crucial role in accurately

assessing load and resistance factors for fatigue analysis. NDE and SHM tech-

niques contribute to improved fatigue assessment and condition evaluation of

bridges, providing valuable insights into structural behaviour and facilitating

maintenance, repair, and replacement decisions. These methods collectively en-

hance the understanding and management of fatigue-related issues in bridges.

This chapter focuses on fatigue analysis methodologies using SHM techniques

to evaluate the fatigue life and RUL of structures. Two approaches are discussed:

RUL prediction using the S-N approach and RUL prediction using the fracture

mechanics approach. In the S-N approach, the fatigue life of structural elements

is assessed based on fatigue damage using stress history data obtained from SHM

techniques. Rain flow analysis simplifies the complex stress history data, and

a fatigue damage spectrum is constructed based on the analysis results. The

cumulative damage approach consolidates individual contributions to estimate

the fatigue life.

In the fracture mechanics approach, Paris’s Law is used to estimate the crack

growth rate based on the SIFs. The SHM system predicts the crack size and

growth direction, considering known model parameters. Factors influencing fa-

tigue life, such as loading patterns, stress levels, and material properties, are also

discussed. Cumulative damage assessment and fatigue life prediction methods,

such as the CDM and Miner’s rule are presented. The chapter further explores

crack modelling using the XFEM in ABAQUS and the automated calculation of

SIFs using a combination of ABAQUS, Python, and MATLAB. The proposed

algorithm allows for the iterative prediction of crack growth and fatigue life.

The framework is validated by comparing the numerical solutions with ana-

lytical results. Numerically simulated SIFs, validated against benchmark values,

are used for estimating fatigue life. ABAQUS-XFEM is employed to obtain SIFs

for edge and centre crack models with varying crack sizes. The calculated SIFs

align well with analytical values. The algorithm is also applied to a complex

specimen, demonstrating minor differences in SIFs obtained using ABAQUS-K

and ABAQUS-J methods. The proposed framework enables the automatic cal-

culation of SIFs for both standard and complex specimens, facilitating fatigue life

determination under similar loading conditions. The algorithm’s effectiveness is

further confirmed for thermo-mechanical loading conditions, yielding similar re-

sults. Overall, the study showcases the reliability and efficiency of the proposed

algorithm in calculating SIFs under various scenarios.
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Chapter 3

Fatigue life prediction under

constraints of limited data

availability

This study first attempts to deal with structures in which fatigue crack is

visible, measurable, and propagating under cyclic operational loading in order to

predict its life. This chapter further addresses the challenges and limitations in

fatigue damage estimation for civil infrastructures under the scarcity of data.

To overcome these challenges, a novel SHM-based fatigue estimation approach

is proposed for structural systems that are under monitoring yet sufficient data

is not available to approach traditional RUL estimation methods. The proposed

algorithm employs a Bayesian filtering framework to assess fatigue parameters in

real-time, improving estimates as more data becomes available. The effectiveness

of the proposed approach is evaluated through a series of experiments, including

numerical and real-time laboratory experiments. The worst-case scenario possible

for a real structure, identified from these experiments, is then imposed on a

numerical bridge joint in order to validate the capability of the proposal in dealing

with real-life problems.

3.1 Introduction

Simulating the propagation of fatigue cracks in structures is commonly ap-

proached using a well-established parameterized fatigue model, i.e. Paris model

for which the model parameters depend on the material properties. Yet, for
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large civil infrastructures, neither it is pragmatic to expect the material to be of

consistent quality all over the structure, nor component-wise material property

estimation can be considered a practical breakthrough. Different production

batches will inherently induce variation in the material properties. Fatigue and

its consequence, on the other hand, is sensitive to the presence of small and

unavoidable micro-structural irregularities caused during manufacturing Wang

et al. (2016). In addition, the incoming service load is also not certain and con-

stant throughout the service life of the structure which may induce randomness

in the crack propagation process. These aspects eventually render the problem

of material property or model parameter estimation complex. However, it can

be holistically dealt with using a probabilistic approach to address uncertainty

quantification.

In this context, this study concentrates on predicting fatigue life for steel

bridges with welded joints. Under usual service loading, a critical part of a struc-

tural configuration such as joints, are typically subjected to cyclic stresses which

might drive them to undergo fatigue failure  Lagoda and G lowacka (2020) and

therefore should ideally be monitored for their fatigue life Marques et al. (2018).

Typically welded joints have complex geometries, sometimes with existing fa-

tigue cracks. For damage prognosis of such structural components, the ambient

variability in temperature induces a combined thermo-mechanical loading that

may at times accelerate the fatigue process. Also, the associated uncertainties of

unknown origin and magnitude inherent in the predictor model, material prop-

erties, and loading render the entire problem to be probabilistic. Moreover, the

complex geometry, typical for civil engineering structures, makes the problem of

predicting its remaining service life, a challenging task that has to be addressed

in a systematic manner.

3.2 Challenges and limitations in fatigue life es-

timation for civil infrastructures

Several studies investigated probabilistic approaches for fatigue life prediction

for various types of structures: offshore platforms Karamchandani et al. (1992)

and aircraft Cavallini and Lazzeri (2007) are to name few. There exist several

detection techniques for cracks and/or damages in the literature Li et al. (2015);

Nanthakumar et al. (2016); Feng and Feng (2018) approaching the problem using
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nondestructive techniques, vibration-based approaches Sen et al. (2021); Aswal

et al. (2021a), computer vision, machine learning Sharma and Sen (2021), etc.

In this process, predicting the RUL (or fatigue life) has become one of the prime

concerns Sun et al. (2014) taking the objective beyond crack detection. With

fatigue life estimation-based approaches, the damage evaluation has typically

been defined with Paris’ law, and the associated parameters are estimated offline

from the measured SHM data Kwon et al. (2012); Mohammadi et al. (1998).

In light of the uncertainties associated with fatigue estimation in civil infras-

tructures, it is more practical to employ probabilistic estimation approaches that

enable real-time estimation while accounting for uncertainties related to param-

eters, models, and forces. By incorporating probabilistic methods, the proposed

approach acknowledges the inherent variability and lack of complete information

in the estimation process, allowing for more robust and reliable predictions of fa-

tigue damage. This approach considers the uncertainties as a crucial aspect and

provides a pragmatic solution to address them effectively during online real-time

estimation.

3.2.1 Bayesian filtering-based approaches for RUL esti-

mation

The relative robustness of sample-based filtering approaches like PF or EnKF

for nonlinear system estimation has been explored extensively in the litera-

ture Lin et al. (2018); Chen et al. (2016); Compare and Zio (2014); Branco et al.

(2009). Yet, their computational demand is most often perceived to be imprac-

tical for problems where either an economical or prompt solution is needed. For

parameter estimation problems, EKF jointly estimates the parameters in paral-

lel to the system states with a joint estimation approach termed the Joint-EKF

or JEKF approach. Despite the extensive application for parameter estimators,

concerns have been raised against JEKF since it lacks ergodicity and the analyt-

ical format Chen et al. (2003). Moreover, JEKF estimation has been reported to

diverge with a larger state dimension Ljung (1979). Even after such shortcom-

ings, JEKF has the potential for being the computationally cheapest nonlinear

estimator for moderate-size and moderately nonlinear systems. Furthermore,

UKF, even after being theoretically superior to EKF, is reported to not be capa-

ble of yielding good estimates for crack and parameters in practice Wang et al.

(2016).
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Eventually, EKF has been seen in numerous applications recently for fatigue

prognosis problems. Singleton et al. (2014) employed EKF for bearing dam-

age prognosis and RUL estimation. Material degradation-sensitive features are

extracted from the vibration signals which are then fitted in order to avoid em-

ploying the full-scale degradation model. EKF has also been applied to estimate

the prognostics of proton exchange membrane fuel cells in Bressel et al. (2016). In

this attempt, with each new state of health estimation, the RUL is updated and

further extrapolated to its threshold. A similar fatigue crack growth prognosis

problem is solved using EKF in order to develop a straightforward method that

is easy to implement while being computationally cheaper Wang et al. (2017);

Robinson et al. (2018). Xu and Chen (2017) estimated the probability mass

function of the RUL of lithium-ion batteries by extrapolating samples from the

state-parameter distribution based on the EKF.

3.2.2 Challenges with limited data availability

A thorough examination of the existing literature reveals that the majority

of approaches for estimating fatigue life in civil infrastructures are character-

ized as offline methods Kwon et al. (2012); Adasooriya and Siriwardane (2014);

Mohammadi et al. (1998). Offline methods require the availability of complete

measured data to determine the RUL of the structure or component. On the

contrary, an online algorithm allows this flexibility to use data only when it is

available. Further, with Bayesian filtering-based approaches, prior information

(or belief) on the fatigue model parameters and their evolution can be used in

the absence of measured data. Of course, the estimation accuracy should ideally

be better post-drawing inference from measured data. Yet for such estimation

problems, filtering approaches are preferred since they allow fusing prior beliefs

with information embedded in measurement while dealing with real-life uncer-

tainties. Finally, it can also be verified that most filtering-based RUL estimation

approaches available in the literature deal with systems operated under a con-

trolled environment, made of reliable materials, and subjected to sufficiently

known stress cycles. Unfortunately, the same can never be expected for civil in-

frastructural systems and one needs to take required measures in order to employ

such filtering approaches for RUL estimation for civil engineering structures.

52



3.2.3 Limitations of the Paris model

This chapter proposes an online model-based approach to predict (/estimate)

the fatigue life from the available SHM data by employing EKF. Initially, a Paris

law model is used to develop a numerical representation of the fatigue crack prop-

agation through the associated model parameters, and the crack propagation is

studied by considering the various uncertainties that dwell in reality. Never-

theless, not conforming to the idealization made with Paris law about the stress

being tensile only, the typical bridge structures experience both tensile and com-

pressive stress in their members and joints. However, the crack propagates only

when the stress is tensile while under compressive stress, a crack closure effect

generally takes place reversing the crack growth. In order to achieve an accurate

estimate of the fatigue life of a bridge or its components, both effects need to be

considered in the predictor model. The proposed method is therefore modified

with updated Paris law that takes the crack closer effect into consideration.

An extensive numerical study is conducted on finite plates with different dam-

age scenarios like centre cracks and edge cracks under mechanical and thermo-

mechanical loading conditions. Estimation of updated Paris model parameters

and fatigue crack prognosis with the proposed approach has been demonstrated

on this test set. Further, an extensive numerical study is performed on a welded

joint of a bridge based on the assumption of the worst operational scenario.

A laboratory experiment is finally conducted on CT specimens to validate the

proposed method.

3.3 The proposed approach to predict fatigue

life

The proposed method comprises two steps: first, estimating the Paris model

parameters based on the past crack growth history, and second, performing

crack prognosis using the estimated model parameters. In this study, a Bayesian

filtering-based prediction-correction approach is employed to estimate crack prop-

agation and the associated model parameters in a joint state-parameter estima-

tion framework using available SHM data. The selection of the appropriate SHM

data type is crucial depending on the specific scenario. For structures with vis-

ible cracks, the estimation of RUL primarily relies on the prognosis of crack
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length based on the available crack growth history. This type of problem neces-

sitates a deeper understanding of crack geometry, evolution, and fatigue crack

propagation, rendering it more complex and requiring the use of computationally

intensive numerical models.

In order to replicate the physical system and its fatigue crack propagation, a

parameterized model is required. The selection of the model parameters depends

on the specific objective of the study. In this particular approach, the objective

is to perform damage prognosis using an updated Paris model incorporated into

a state space predictor model. The parameters of the Paris model, namely c and

m, are considered estimable parameters. The associated parametric uncertainty

is assumed to be epistemic in nature, indicating that it is deterministic and time-

invariant, but lacks sufficient knowledge. As more information is collected from

the SHM data, specifically the crack growth history, the uncertainty is expected

to be reduced. Therefore, the proposed approach aims to update and refine the

estimations of the model parameters based on the available SHM data, gradually

reducing the epistemic uncertainty associated with them.

In this joint estimation approach, the parameters and crack length are treated

as the unobservable state (or state-parameter) vector that evolves over time ac-

cording to a state (or process) equation or model. The predictor model is used to

propagate the estimates of the crack length (a) in time, conditioned on the cur-

rent estimate of the system parameters. A measurement equation (or mapping)

is employed to observe these unobservable states through measurements. It is

important to note that the actual value of the crack length cannot be directly

observed and can only be measured with some measurement noise introduced by

the sensors. The measurement model captures this mapping of the system states

to the available measurements within a probabilistic framework, considering the

measurement uncertainty. The subsequent correction step then refines the esti-

mate by simultaneously correcting the parameters using the available data. The

following section provides a detailed explanation of the crack propagation model

used in the process equation, followed by the measurement model employed in

this study.
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3.3.1 Fatigue crack growth model

Traditionally, the fatigue crack growth follows a degradation model based

on the Paris-Erdogan rule Paris (1963), as shown in Equation (2.1). However,

this traditional Paris law is not applicable in cases where the stress intensity

alternates between compression and tension, resulting in the occurrence of the

crack closure effect. To address such scenarios, researchers have proposed al-

ternative rules that account for the shortcomings of Paris Law by considering

the effects of crack closure and stress ratio (R). These approaches modify the

influence of the SIF, considering only the tensile part of the stress cycle. This

yields a relationship that defines the fatigue crack growth rate (i.e., da
dN

) as a

function of the effective SIF range (∆Keff ) and R. Based on experimental data

on fatigue crack propagation, Kujawski and Ellyin (1987) proposed an approach

to calculate ∆Keff using the following expressions Ellyin (2012):

∆K0
eff |R=0 = ∆Keq

[
1 − 1

2

(
∆Kth

∆Keq

)2
]
> ∆Keq − ∆Kth

∆Keff |R ̸=0 =
∆K0

eff[
1 −

(
(1+Rσ)Smax

2σ′
f

)] (3.1)

where ∆Kth is the threshold SIF range, Smax is the maximum stress, and σ′
f

is the fatigue strength coefficient. The calculation of ∆Keq is performed using

an automated calculation of SIFs, as described in Section 2.4. The numerically

obtained data is then subjected to curve-fitting in order to establish a correlation

between ∆Keq and a using a polynomial equation. Rσ is the modified stress ratio

at the crack tip region and is calculated by the following equation:

Rσ = 1 − 2

[
(1 −R)2

4

] n′
1+n′

Rσ = Rσ +
log(δ∗) − log(rc)

log(rm) − log(rc)

(3.2)

where n
′

is the cyclic exponent, δ∗ is the material length parameter, rc is the

cyclic plastic zone and rm is the monotonic plastic zone under the fatigue loading

condition. Ellyin (2012) discussed that Rσ sharply decreases as the distance from

the crack tip increases from the regions rc to rm.

Figure 3.1 reveals that the fatigue crack growth rule is applicable for a specific

crack propagation region that is between the near-threshold crack propagation
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Figure 3.1: Typical fatigue crack growth curve.

region I and the near-unstable crack propagation region III.(
da

dN

)
cr

= C(∆Kcr)
m = vcr (3.3)

Further, da
dN

can be established as a function of not only ∆Keq but also of the

condition of crack growth instability for the cases when maximum SIF (Kmax)

is approaching its critical value (KIC) Forman et al. (1967) causing the crack

propagation rate to be infinity. Eventually, the fast deviation from the linear

part of Region II can be attributed to the sudden rise in the crack propagation

rate. At the transition point between Region II and Region III, designated as cr

in Figure 3.1, the following holds true, with ∆Kcr = ∆KIC . Reasonably, ∆Kcr

can be assumed to take the maximum value as KIC due to the fact that fast

fluctuation in da
dN

occurs on triggering crack instability, yielding the following

rule,

∆Kcr = (1 −R)KIC (3.4)

As a result, incorporating Equation (3.4) into Equation (3.3), an approximate

relationship in logarithmic form between the Paris constants can be established,

assuming that the rise of the Paris instability corresponds to the Griffith-Irwin

instability Carpinteri and Paggi (2007):

logC = log(vCR) + mlog

[
1

(1 −R)KIC

]
(3.5)
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It should be noted here that the functional relationship between C and m in-

volves additional parameters like R, vCR, and KIC which can either be estimated

from the field test or can be safely assumed to be constant for each group of ma-

terials Radhakrishnan (1980).

3.3.2 System description

It has been already discussed that C and m, being assumed with epistemic

uncertainty, must be estimated probabilistically using available measured SHM

data (i.e., crack size variation over stress cycles). With a predictor-corrector

environment for such estimation, there is an imperative requirement for a suf-

ficiently accurate predictor model (as in Equation (3.1)). In this process, the

associated model parameters like ∆Kth, R, σ′
f can be considered to be reliably

estimated through field investigation or combined numerical-experimental anal-

ysis. Of course, ∆Keff is a deduced variable depending on a as the unknown

variable (i.e., ∆Keff = ϕ(a)). The associated details are presented in the fol-

lowing.

Finally, the analytical formulation for crack propagation can be discretized in

time. The uncertainty due to possible modeling inaccuracy can be represented

with an SWGN process model N (0;Qa). This leads to a state-space system

model with ak being one of the state variables as,

ak+1 = ak + C(∆Keff )m∆N + va
k

= f(ak,mk, Ck) + va
k

(3.6)

va
k is a realization of the assumed SWGN model and f(•) provides the func-

tional representation of the crack size propagation model between two consecu-

tive steps. Clearly, the process equation boils down to three variables of interest,

i.e. a (already assumed as a time-varying state) with C and m, which can be

considered as parameters.

3.3.3 Joint state-parameter estimation

Joint estimation of states and parameters is a well-researched topic in the

fields of stochastic inverse estimation problems. The same approach is employed

in this chapter to probabilistically estimate the material parameter states C and
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m while filtering out noises from the measured crack size to facilitate better

estimation of response state a. Eventually, the parameter states are required

to be appended in the state vector in order to jointly estimate the augmented

state Xk using the available measurements. The propagation model for such

unobservable states however needs them to be of similar scales which is not

possible with the material parameter C in the state vector. The assumed state

vector has therefore been defined with Θ as a negative logarithmic mapping of

C as:

Xk = [ak mk Θk]T (3.7)

This ensures that the estimable parameter Θk is of comparable scales of a and

m. The process equation specific to this problem can therefore be defined as:

Xk+1 =


f1(Xk)

mk

f2(Xk)


+


va
k

vm
k

vΘ
k


= F(Xk) + vk (3.8)

where f1(Xk) and f2(Xk) can be elaborated as: f1(Xk) = ak +Ck(∆Keff )mk∆N

and f2(Xk) = log(vcr) + mklog
[

1
(1−R)KIC

]
. The associated process noise (i.e.

[va
k vm

k vΘ
k ]T ) can be modeled as a realization from an SWGN process model of

covariance Qk = diag(Qa
k, Q

m
k , Q

Θ
k ) where in Qa

k, Q
m
k , andQ

Θ
k are the variances

of the assumed SWGN noise associated to the states and parameters a, m and

Θ respectively and operator diag(•) returns a diagonalized block matrix of its

arguments.

It has been discussed in this chapter previously, that the true values of the

crack size ak can never be measured. The available data on the measured crack

size is therefore only a mapping of true ak perturbed by the associated mea-

surement uncertainty due to the rough measuring environment and sensor lim-

itations. The model predicted crack size ak+1 as given in Equation (3.8), is

therefore mapped to measured crack size zk+1. With ak+1 being functions of the

other two state variables Θk+1 and mk+1, the measurement model can therefore

be defined as:

zk+1 = H(ak+1,mk+1,Θk+1) + wk+1 (3.9)

Here wk+1 denotes the measurement noise realized from an SWGN measurement

uncertainty model N (0;Rk+1), with Rk+1 being the time-invariant measurement

noise covariance.
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3.3.4 JEKF-based joint estimation of states and param-

eters

It is evident from the system Equations 3.8 and 3.9 that the state evolution as

well as the measurement mapping, are nonlinear, which calls for nonlinear filter

variants to be employed for estimation. EKF is one of the efficient approaches

for nonlinear system estimation that extends the applicability of KF for nonlin-

ear systems (and hence the name Extended-KF) is therefore employed in this

attempt. With the mentioned process and measurement equation, EKF is em-

ployed in this study for the estimation of the state a and the model parameters

mk and Θk. In order to estimate a nonlinear system, EKF linearizes the system

locally by employing Taylor’s first-order expansion. Subsequently, a KF-based

estimation approach can be employed, as elaborated in the following. The nota-

tion Xi|j for estimated state variable X represents its estimate at time instant

i, provided inference from observation up to and including the time instant j is

embedded in the estimate. In the following, the initialization, prediction, and

update phases with EKF are detailed.

To start with the estimation, a reasonable assumption must be made on the

initial state estimate X0|0 along with the state error covariance (P0|0), denoting

the amount of certainty in the initial state estimate. It is normal to presume

a high value for the P0|0 in the absence of any prior knowledge of the initial

state values. Besides, the time-invariant process and measurement noises, i.e.,

Qk and Rk+1 are to be assumed as well. While the selection of Rk+1 is quite

straightforward and can be established by directly measuring the statistics of

inherent sensor noise, Q needs to be assumed based on the desired estimation

accuracy and promptness. Ideally, the components of Qk allow perturbation to

their mean estimates and therefore should be chosen wisely.

For each time iteration, the prior mean estimate for the state, i.e, Xk|k is

propagated in time through the process equation detailed in Equation (3.8), as,

Xk+1|k = F(Xk|k) (3.10)

Accordingly, the predicted state error covariance matrix can be estimated as:

Pk+1|k = ΦkPk|kΦ
T
k + Qk (3.11)

Φk denotes the Jacobian matrix of the augmented system equation around the
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current state estimate Xk|k, elaborated as:

Φk =

[
∂F
∂X

]
X=Xk|k

=


∂f1(a)
∂a

∂f1(a)
∂m

∂f1(a)
∂Θ

0 1 0

0 ∂f2(a)
∂m

∂f2(a)
∂Θ

 a=ak|k, m=mk|k, Θ=Θk|k (3.12)

With the propagated statistics, the Kalman gain Kk+1 can then be calculated

from the associated innovation covariance Sk+1 matrix as,

Sk+1 = Hk+1Pk+1|kH
T
k+1 + Rk+1

Kk+1 = Pk+1|kH
T
k+1S

−1
k+1

(3.13)

with Hk+1 being the Jacobian of the measurement equation (cf. Equation (3.9))

around the propagated state estimate Xk+1|k as:

Hk+1 =

[
∂H
∂X

]
X=Xk+1|k

(3.14)

Next, with the measurement model defined in Equation (3.9), the propagated

state estimate is observed in terms of predicted measurement z̃k+1 at (k + 1)th

time instant. Subsequently the innovation (εk+1) between predicted (z̃k+1) and

actual (zk+1) measurement can be estimated as,

εk+1 = zk+1 − z̃k+1

z̃k+1 = H(Xk+1|k)
(3.15)

Finally, the innovation, εk+1, is used as output feedback in order to correct the

state mean and error covariance prediction as,

Xk+1|k+1 = Xk+1|k + Kk+1εk+1

Pk+1|k+1 = [I−Kk+1Hk+1]Pk+1|k
(3.16)

The approach is elaborated in Algorithm 1 with a pseudo-code for the same.
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Algorithm 1 JEKF-based joint estimation

1: I. Estimating the state parameters
2: 1. Initialization :
3: When k = 0; X0|0, P0|0, Qk, Rk+1 ▷ Initial values
4: 2. Prediction :
5: for k = 1, 2, . . . , NL − 1 do ▷ NL - available data out of total cycles NT

6: Xk+1|k = F(Xk|k) ▷ State space function see Eq. (3.10)
7: Pk+1|k = ΦkPk|kΦ

T
k + Qk ▷ State error covariance see Eq. (3.11)

8: Φk =
[
∂F
∂X

]
X=Xk|k

▷ Jacobian function - augmented, see Eq. (3.12)

9: 3. Update :
10: Sk+1 = Hk+1Pk+1|kH

T
k+1 + Rk+1 ▷ Innovation covariance see Eq. (3.13a)

11: Kk+1 = Pk+1|kH
T
k+1S

−1
k+1 ▷ Kalman gain see Eq. (3.13b)

12: Hk+1 =
[
∂H
∂X

]
X=Xk+1|k

▷ Jacobian function - measurement, see Eq. (3.14)

13: εk+1 = zk+1 − z̃k+1 ▷ Innovation see Eq. (3.15)
14: Xk+1|k+1 = X̂k+1|k + Kk+1εk+1 ▷ Updated mean see Eq. (3.16a)
15: Pk+1|k+1 = [I−Kk+1Hk+1]Pk+1|k ▷ Updated covariance see Eq. (3.16b)
16: end for
17: II. State prognosis approach based on estimated parameters

18: When k = NL;
[
ak mk Θk

]T
= N (X̂k|k;Pk|k) ▷ Initial conditions

19: Prognosis :
20: for k = NL, . . . , NP do ▷ NP Number of cycles in prognosis, for ak+1 < ac
21: ak+1 = f(ak,mk, Ck) ▷ see Eq. (3.8)
22: end for

3.4 Validation Study

The proposed approach has undergone validation through three sets of exper-

iments, including two numerical experiments and one real experiment, in order

to demonstrate its effectiveness. The flow chart illustrating the proposed ap-

proach is presented in Figure 3.2. The first numerical experiment focuses on

mechanical and thermo-mechanical loading applied to a finite plate, where the

crack propagation is modeled using MATLAB. The proposed approach is then

utilized to estimate the known system parameters and states based on the avail-

able crack propagation history data collected over loading cycles. The objective

of this experiment is to verify whether the proposed algorithm can accurately

drive the state and parameter estimates toward their assumed true values. Ad-

ditionally, with the converged estimate, the prognosis of fatigue crack growth is

conducted, and the accuracy and precision of the predictions are evaluated for

various levels of measurement noise. These experiments aim to provide valida-

tion and assessment of the proposed approach, demonstrating its capability in

estimating parameters, predicting fatigue crack growth, and assessing the impact
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of measurement noise on prediction accuracy.

Figure 3.2: Flowchart of the proposed approach.

In the subsequent experiments, the proposed approach is applied to a real-life

welded gusset joint in a bridge structure, which is subjected to fatigue loading.

Joint is modeled using ABAQUS software to simulate the corresponding crack

growth history. By utilizing similar data that depicts the crack growth over

loading cycles, the proposed algorithm is employed to perform fatigue prognosis

for the system, and the predicted results are compared with the actual crack

growth. This experiment aims to demonstrate the potential and applicability of

the algorithm for real-life infrastructures with complex geometries.

Additionally, a CT specimen is subjected to fatigue loading, and the crack

propagation over the loading cycle is monitored. A portion of the monitored data

is used for system estimation using the proposed approach, while the remaining

data is utilized to cross-validate the accuracy and validity of the prognosis results.

This experiment provides further evidence of the effectiveness and reliability of

the proposed algorithm in estimating and predicting fatigue crack growth.

Each of these experiments is described in detail to provide a comprehensive

understanding of the methodology employed and the outcomes obtained, high-
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lighting the potential of the proposed algorithm in addressing fatigue prognosis

challenges for real-life civil infrastructures.

3.4.1 Numerical validation

The fatigue life estimation of standard specimens with edge and center cracks

is performed, employing identical material properties and boundary conditions

as outlined in Section 2.5. The numerically obtained SIFs from ABAQUS-K are

utilized to simulate the fatigue crack growth under a constant amplitude applied

load. The crack growth time history data is simulated by using Equation (3.8).

State-parameters estimation and prediction

In the following analysis, the proposed approach is applied to estimate the

system states and parameters based on the crack growth time history data.

Different levels of information, ranging from 10% to 90% of the complete data,

are utilized for both estimation and prediction. This allows for an assessment of

the achievable estimation and prediction accuracy using the proposed approach

in relation to the available data.

To ensure a realistic experiment, the simulated crack growth time history

data is contaminated with noise using a SWGN noise process. The noise con-

tamination levels are defined with a signal-to-noise ratio (snr) that represents

the ratio between the powers of the signal to the added SWGN noise (typically

defined as the ratio of the variances of the response and noise signals). Various

snr levels, including 0%, 1%, 2%, 5%, and 10%, are examined in this study to

evaluate the impact of different noise levels on the estimation and prediction

accuracy.

In several studies focusing on probabilistic fatigue life estimation for bridges,

crack length has been treated as a random variable to enable probabilistic es-

timation based on SHM data. Similarly, the Paris model parameters have also

been modeled as Gaussian random variables in these studies Marques et al.

(2018); Albrecht and Yazdani (1986). This probabilistic framework allows for a

more comprehensive and robust estimation of crack length and model parame-

ters, taking into account the inherent uncertainties associated with fatigue crack

growth and SHM measurements.
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In this study, similar to previous works Marques et al. (2018); Lin et al.

(2018), crack length, and model parameters are treated as random variables and

estimated using the available crack growth history. However, it is important

to note that an uncertainty analysis should be conducted before categorizing a

parameter as deterministic or stochastic Hamdia et al. (2017). In this study,

the parametric uncertainty for the Paris model parameters is assumed to be

epistemic, meaning that it is reducible through inference. On the other hand,

other sources of uncertainty such as uncertain loading, modeling inaccuracies

arising from uncertain parameters and assumptions, and sensor noises are as-

sumed to be aleatoric and are subsequently examined in the presence of process

and measurement noises.

Table 3.1 presents explicit details regarding the initial assumptions for the

state and parameter, their characteristics and distributions, as well as fracture

parameters of the assumed material. The initial state covariance P0|0 is set to

diag(0, 0, 0), and the process noise covariance Qk is set to diag(1.43 × 10−8,

m0|0 × 10−3, Θ0|0 × 10−5). The loading cycle steps (∆N) are consistently chosen

to be 10 cycles. It is assumed that when the effective stress intensity factor

range ∆Keff exceeds a predefined critical threshold ∆Kcr, the structure reaches

a critical state, leading to crack growth into region III and eventual catastrophic

failure.

Table 3.1: EKF parameters for finite plate experiment

Parameters Type Numerical values

ao True value 5 mm

m True value 3.88

Θ True value 34

a0|0 Initial estimate N (5, 1)

m0|0 Initial estimate N (3, 2)

Θ0|0 Initial estimate N (27.65, 14.44)

∆Kth Deterministic 4 MPa
√
m

∆KIC Deterministic 48 MPa
√
m

σ′
f Deterministic 150 MPa

vcr Deterministic 2.5 × 10−3 mm/cycles

Subsequently, the estimation of states and parameters is conducted for var-
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ious combinations of available information and noise contamination levels. Fig-

ure 3.3 illustrates the convergence of the statistical estimates, including the mean

and variance, for the parameters (Θ and m) as the level of available informa-

tion increases. This investigation is carried out considering different levels of

available data with an snr of 5%.

The test structure in this case features an edge crack, and the response is sim-

ulated under cyclic mechanical loading with Pmax = 36 kN and Pmin = 3.6 kN ,

along with a R = 0.1. The true values for the parameters are depicted with

dashed lines. The inset figure demonstrates that the parameter estimation pro-

cess has been prompt and accurate. It can also be observed from the estimation

of the parameter distribution that the peak is gradually reaching the true value,

while the distribution is becoming narrower, indicating increased precision.

The convergence of the parameter means toward their true values is relatively

fast, even with only 10% of the available information. However, the precision

of the estimation, represented by the parameter distribution, improves as more

information becomes available. Eventually, with 90% of the information, the

estimation uncertainty is significantly reduced, and both the accuracy and pre-

cision of the estimates fall within acceptable limits.

Next, the accuracy and precision of crack growth prediction are evaluated,

and the corresponding results are presented in Figure 3.4a. It is observed that as

the level of available information increases, the likelihood of accurately predicting

the actual crack growth within the prediction band also increases. Therefore,

while parameter estimates may be sufficiently accurate with 10%, 20%, or 50%

of the available information, the prognostic results with those estimates may not

be very accurate. This indicates that the accuracy of fatigue crack prognosis is

dependent on the level of information available.

Furthermore, the sensitivity of the proposed algorithm to noise contamination

is investigated. In this analysis, the number of cycles required for ∆Keff to

reach the critical condition is compared to its true value, and the deviations are

presented in Figure 3.4b. The true curve is simulated using the true values of

the Paris law parameters through traditional crack propagation methods. The

mean crack length estimate is presented, along with the 95% confidence band.

It is observed that the accuracy of the estimation is significantly affected by the

level of noise contamination. However, with noise-free data, the estimation is

found to be perfect regardless of the level of available information. For noisy
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(a) Mean estimation for m. (b) Parameter distribution for m.

(c) Mean estimation for Θ. (d) Parameter distribution for Θ.

Figure 3.3: Convergence of estimated parameters m (above) and Θ (below).

data, it is observed that the noise effect can be reduced by employing recursive

estimation with more information.

(a) Estimation and prognosis of crack
growth with different levels of available
data with 5 % snr.

(b) The relative error in predicting the
number of cycles with various noise
levels for edge and center crack.

Figure 3.4: Deviation in estimation and prognosis under mechanical loading.

Similar experiments are also conducted for the center crack case, and it is

found that the estimation sensitivity is similar for both the edge crack and center
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crack scenarios.

3.4.2 Experimental validation

Finally, the proposed algorithm is tested using crack growth time history

data obtained from a real laboratory-level experiment on a CT specimen, as

conducted by Kumar et al. (2021). In this experiment, the fatigue crack growth

rates were monitored, and the parameters Θ and m were estimated as C0 and

m0 using the complete test data, following the guidelines provided in ASTM

E647 Standard (2015). The same dataset is then utilized with the proposed

online algorithm, and the Paris model parameters are estimated in real-time.

These estimated parameters are subsequently compared to their corresponding

earlier estimates.

The CT specimen used in this experiment is made of 12.5 mm thick aluminum

alloy (AA 5754) and features a V-notch with a length of 12 mm, created using

an electric discharge machine according to the test specifications. The geometry

of the test specimen is depicted in Figure 3.5a. To control the crack propagation

direction during the fatigue test, a sharp crack of 1 mm is machined as a pre-

crack at the notch tip of the specimen by applying a fatigue load of 4 kN at a

frequency of 10 Hz. The crack growth at each load step is measured using a crack

opening displacement (COD) gauge attached to the specimen. The experimental

setup is illustrated in Figure 3.5b. Further details regarding the experimental

procedure can be found in the work of Kumar et al. (2021).

(a) The geometry of the CT
specimen.

(b) The experimental setup with a closed view of the speci-
men in hold with COD gauges.

Figure 3.5: Fatigue crack growth test setup.
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The validation study in this experiment focuses on a CT specimen subjected

to tensile loading. The test is conducted under a constant fatigue load with a

frequency of 5 Hz, a ∆P = 4 kN , and R = 0.2. The experiment continues until

the crack reaches its critical length of 41.25 mm. Figure 3.6a presents the exper-

imental fatigue crack growth curves for the CT specimen. A linear relationship

in the form of a sigmoidal curve is observed between da
dN

and ∆K when plotted

on a log-log scale. The range of crack growth rate [10−4 − 10−2] mm/cycle is

identified as Zone II of fatigue cracking, as evident from Figure 3.6b.

Traditional approaches for offline estimation of Paris model parameters are

adopted in the following in which the C and m are obtained through fitting all

the observations by a least-square regression approach. The other parameters

required for prediction (i.e. ac, vcr, KIC , N) are also obtained and are shown in

Table 3.2. The values of Qk, Rk+1 are 19.08 and 0.77 respectively.

(a) Fatigue crack growth curve. (b) Sigmoidal curve.

Figure 3.6: Experimental results of CT specimen.

Table 3.2: Parameters calculated from experimental and assumed data

Paris model parameters ac KIC vcr
N

C0 m0 (mm) (Mpa
√
m) (mm/cycles)

1.35 × 10−11 2.95 32.19 28 2.58 × 10−3 67033

Similar to the numerical experiments, the proposed algorithm is employed for

fatigue damage prognosis of the CT specimen using the measured crack growth

time history. Figures 3.7 and 3.8 demonstrate the accuracy and promptness in

estimating the Paris model parameters (C and m) compared to the corresponding

C0 and m0 obtained using the complete data. The prognosis is attempted with

different levels of available measurement data, and the accuracy and precision of

the prediction can be observed from Figure 3.8b. It is evident that the estimates
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of C and m do not perfectly match the values of C0 and m0 even with assimilating

90% of the measured data. However, despite this discrepancy, the estimates

yield better prognosis results (Figure 3.8a) compared to using C0 and m0. This

highlights the practicality of the proposed approach, which incorporates past

beliefs and assimilates new data based on its likelihood, avoiding overfitting

that can occur with deterministic approaches.

(a) The mean estimate for m. (b) Parameter distribution for m.

(c) The mean estimate for Θ. (d) Parameter distribution for Θ.

Figure 3.7: Convergence of estimated parametersm (above) and Θ (below) at different
levels of experimental data of a CT specimen.

Furthermore, the investigation includes the estimation of the remaining fa-

tigue life (N) using both Deterministic (Det) and Bayesian filter (Bay) ap-

proaches with the measured crack growth time history. The results are com-

pared to the true values, demonstrating that the Bayesian filter approach is more

accurate than the deterministic approach. As the level of available information

increases, crack growth is more likely to be predicted within the prediction band.

This clearly establishes the efficiency of the proposed approach in the context of

damage prognosis.

It is important to note that in practical scenarios, the loading conditions

are assumed to be known in advance for calculating the SIF. The geometry
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(a) Estimation and prognosis of crack
growth with different levels of available
data with 1% snr.

(b) The relative error in predicting the
number of cycles.

Figure 3.8: Estimation and prognosis for CT specimens based on experimental data.

function is considered based on the guidelines provided in the handbook Tada

et al. (2000). These assumptions are made to simplify the calculation of SIF

while maintaining accuracy and practicality in real-world applications.

The idea of this experiment is to mimic real field testing in which the loca-

tion of the crack is known. Accordingly, the alternating stresses that are coming

onto the cracked domain can be estimated by analyzing the structure globally.

The SIF can further be made available through a rigorous numerical analysis

involving the geometry function of the cracked domain. Finally, through moni-

toring the crack over time using instruments like a crack meter, the crack growth

history can be recorded from which Paris model parameters can be estimated

online using the proposed filtering-based approach. Eventually, the estimate gets

better with each measurement set made available and as such does not demand

the complete measurement at once, allowing ever-evolving estimates that ensure

better accuracy in RUL estimation than traditional offline approaches.

3.4.3 Thermo-mechanical loading

In a similar fashion to the previous experiment discussed in Section 2.5, the

same finite plate with consistent boundary conditions, temperature range, and

loading conditions are utilized. The initial crack length of 5 mm is maintained

for consistency as well. The estimation approach described in Algorithm 1 is

employed to investigate crack growth under thermo-mechanical loading, and

the corresponding results are presented in Figure 3.9 and 3.10. These results
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demonstrate similarities to the earlier experiment, providing further confirmation

of the effectiveness of the proposed algorithm in accurately predicting fatigue life

for both loading scenarios.

(a) The mean estimate for m. (b) Parameter distribution for m.

(c) The mean estimate for Θ. (d) Parameter distribution for Θ.

Figure 3.9: Convergence of estimated parameters m (above) and Θ (below) under
harmonic thermo-mechanical loading.

(a) Estimation and prognosis of crack
growth with different levels of available
data with 5 % snr.

(b) Relative error in predicting the num-
ber of cycles with various noise levels
for edge and centre crack.

Figure 3.10: Deviation in estimation and prognosis under thermo-mechanical loading.

In order to identify the worst-case scenario for both loading types and crack

positions, all possible combinations are tested under similar external loading and
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material properties. Table 3.3 provides a comparison of the number of loading

cycles required for the specimen to fail under mechanical and thermo-mechanical

loading conditions for both edge and center crack positions. It is evident from

the table that an edge crack renders the structure more vulnerable to fatigue-

induced failure compared to a center crack. Additionally, it is observed that

thermo-mechanical loading substantially accelerates the rate of fatigue damage.

This observation motivated us to further conduct experiments with bridge joints,

focusing on an edge crack subjected to thermo-mechanical loading as it represents

a critical scenario.

Table 3.3: Comparing the number of cycles in different scenarios

Loading Mechanical Thermo-mechanical

Location Center Edge Center Edge

Number of cycles 7319430 631750 897660 134030

3.4.4 Bridge joint

Fatigue cracks typically initiate in areas with significant geometric variations

such as bends or notches Haghani et al. (2012). In the case of bridge structures,

the gusset plate within welded joints emerges as a pivotal component susceptible

to fatigue crack initiation, which can eventually lead to overall structural failure.

It is important to note that in this study, perfect welding conditions are assumed

for all joints, and as such, the welding itself is not prone to fatigue damage.

The following numerical experiment focuses on validating the proposed ap-

proach for a real-life civil infrastructure, specifically a bridge structure adapted

from Yin et al. (2017). The corresponding geometric details of the bridge struc-

ture are presented in Figure 3.11a. This experiment aims to assess the effective-

ness of the proposed approach in estimating fatigue crack growth and predicting

the remaining useful life of the bridge structure, considering its complex geom-

etry and realistic conditions.

The calculation of SIFs for structures with simple geometries is extensively

discussed in the literature Tada et al. (2000). However, connections in real-life

bridge structures often exhibit complex geometries, requiring special attention

when determining the corresponding geometrical function and calculating the

associated SIFs. It is crucial to develop structure-specific geometrical functions
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(a) Structural geometry
all units are in millimeters. (b) von Mises stress field.

Figure 3.11: Numerical model of the bridge joint.

to accurately assess the SIFs in such cases. To address this challenge, XFEM

models are employed, where simulated cracks of different lengths are incorpo-

rated. Numerical computations are then carried out to determine the SIFs under

various loading conditions. In order to optimize the structure-specific geometri-

cal function, a higher-order polynomial fitting approach is utilized. This ensures

that the geometrical function accurately captures the complexities of the bridge

structure and enables precise computation of the SIFs.

With Bayesian filtering-based approaches for fatigue damage prognosis, this

study adopts the predictor model-based estimation approach for a bridge struc-

ture with fatigue damage which relies on a high-fidelity numerical model, such

as XFEM models, for accurate estimation. However, it is important to consider

the computational cost and accuracy of the overall process, which is dependent

on the model dimension. Clearly, simulating the entire bridge structure for fa-

tigue damage is not only computationally expensive but also not practical. As a

measure, a simplified model of the bridge is firstly simulated under usual service

loading conditions, and member force time histories are obtained. From this

investigation, the joint with maximum stress can easily be isolated, for which

further fatigue modeling is performed.

To determine the geometry function of the welded joint with complex geom-

etry, an uncracked numerical model (Figure 3.11b) representing only the joint is

created as a substructure. The interface boundaries of the model are subjected

to member forces obtained from the simulation of the simplified bridge model.

The structure is fixed at the centroid of the main chord on both sides and con-

strained using rigid body mechanisms. The bottom ends of the web members
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are also constrained using rigid body mechanisms. The model incorporates solid

elements and three-dimensional (3D) surface-to-surface contact pairs with per-

fect bonding to capture the effects of contact between the gusset plate and the

main chord, as well as the contact between the web and the gusset plate. The

numerical model consists of 45, 144 elements and 83, 064 nodes. The thermal

properties of the material are adopted based on the work of Reddy and Chin

(1998) and are presented in Table 3.4. The bridge structure is simulated under

a thermo-mechanical loading condition, where the base temperature is reduced

from 50◦C to 25◦C to induce thermal stresses. This loading condition allows

for assessing the response of the joint to both mechanical and thermal effects,

providing insights into the fatigue behavior of the welded joint in a realistic

operating environment.

Table 3.4: Material properties of steel at different temperatures

Temperature Elastic modulus Poisson’s Thermal expansion

(◦C) (MPa) ratio coefficient (1/◦C)

25 206 × 103 0.296 12 × 10−6

50 205 × 103 0.301 12.105 × 10−6

Consequently, the zone of stress concentration in the joint, located near the

bend of the gusset plate (Figure 3.11b), is identified. It is reasonable to assume,

without any loss of generality, that a potential fatigue crack would likely initi-

ate from this high-stress zone. The SIF can be calculated using the algorithm

described in Section 2.4. By utilizing the previously obtained geometry func-

tion, the SIF under a specific real variable amplitude loading can be determined,

taking into account factors such as fracture mode, crack shape, and specimen

geometry Imam et al. (2007); Guyer and Laman (2012); Albuquerque et al.

(2015).

To further reduce computational costs, the high-stressed zone identified pre-

viously is modeled separately and simulated with an edge crack under the equiv-

alent thermo-mechanical loading obtained from the previous model. The high-

stressed zone is represented as a plate, and an equivalent load of 22.25 kN is

applied with a R = 0.1. The boundary interface is maintained as the boundary

condition for the simulation. An initial crack length of 10 mm is assumed in the

plate, and the simulation continues until the crack reaches its critical length of

41.25 mm (KIC = 100 MPa
√

(m) Carpinteri and Paggi (2007)).
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The initial values for the crack length and Paris model parameters used in the

simulation are taken from the works of Coppe et al. (2012) and Carpinteri and

Paggi (2007). A detailed description of the preliminary assumptions regarding

the state and parameters of the material is discussed in Section 3.4.1. Their

characteristics and distribution, as well as the assumed fracture parameters,

are presented in Table 3.5. The initial state covariance P0|0 is diag(0, 0, 0) and

process noise covariance Q is diag(1.43 × 10−8,m0|0 × 10−3,Θ0|0 × 10−5) are

considered.

The proposed algorithm is then employed to estimate the fatigue life based

on the crack growth history simulated from this numerical model. The simu-

lated crack growth history is subsequently contaminated with 1% snr SWGN,

as in previous experiments. This contamination allows for assessment of the

performance of the algorithm in the presence of measurement noise.

Table 3.5: EKF parameters for bridge joint experiment

Parameters Type Numerical values

ao True value 10 mm

m True value 3.4

Θ True value 30.55

a0|0 Initial estimate N (10, 1)

m0|0 Initial estimate N (3, 2)

Θ0|0 Initial estimate N (43.27, 11.46)

∆Kth Deterministic 7 MPa
√
m

∆KIC Deterministic 100 MPa
√
m

σ′
f Deterministic 450 MPa

vcr Deterministic 3 × 10−2 mm/cycles

The crack growth history is further employed with the proposed approach to

simultaneously estimate the crack size while estimating the pertinent Paris model

parameters. The results of both parameter estimation are given in Figures 3.12

in which convergence of mean estimate along with the associated estimation un-

certainty is presented. It can be verified that the estimates are not only prompt

but also precise. Further, the crack size estimation and prognosis and their sen-

sitivity towards data size and noise contamination are presented in Figure 3.13a

and 3.13 from which it can be perceived that the proposed method can practi-
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cally perform the crack prognosis well ahead in time being within practical levels

of noise contamination.

(a) The mean estimate for m. (b) Parameter distribution for m.

(c) Mean estimate for Θ. (d) Parameter distribution for Θ.

Figure 3.12: Convergence of estimated parameters m (above) and Θ (below) for the
case of equivalent gusset plate under harmonic thermo-mechanical load-
ing.

(a) Estimation and prognosis of crack
growth with different levels of available
data with 5% snr.

(b) Relative error in predicting the num-
ber of cycles with various noise levels
for edge crack.

Figure 3.13: Estimation and prognosis of equivalent gusset plate under harmonic
thermo-mechanical loading.
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3.5 Summary

In this chapter, an online model-based prognosis algorithm powered by a

Bayesian filtering-based estimation approach has been proposed focusing on pre-

dicting the service life of civil infrastructural components vulnerable to fatigue

failure. The approach takes its basis on defining the crack growth with an up-

dated Paris law model and subsequently estimating the associated parameters

under the unavoidable measurement and process uncertainty. The adoption of

the updated Paris law model helps incorporate the crack closure effects into the

estimation, while the consideration of uncertainty in estimation renders the pro-

posed approach more pragmatic and suitable to be used for real-life applications.

The proposed algorithm consists of two sequential steps: 1. State-parameter es-

timation using the JEKF filter, and 2. Prediction of crack growth based on the

estimated parameters.

The following was experienced:

• Application of stochastic inverse estimation technique using EKF-based

filtering approach for fatigue life estimation helped to deal with process

uncertainty (model inaccuracy) in simultaneity with the measurement un-

certainty.

• Unlike traditional offline approaches, which demand a sufficiently long

crack growth history in order to conclude on the RUL, the present study

takes an online approach that ensures smooth convergence towards the ac-

tual RUL gradually using the available data. It has been observed that,

even with 10% of the available information, the mean estimates of the pa-

rameters reach at least in the vicinity of the respective true values. The

estimation is further improved with the availability of the data.

• Being a recursive data assimilation-based approach, the estimation accu-

racy is observed to be largely affected by noise contamination levels.

• The edge crack makes the structure more vulnerable to fatigue failure

than the center crack. In addition, it is also found that thermo-mechanical

loading advances fatigue damage dramatically. Accordingly, a combina-

tion of edge crack with thermo-mechanical loading is considered the worst

operational scenario for investigating the proposed approach for the RUL

estimation in the bridge joints.
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• The present approach provided not only the mean estimates of the param-

eters or RUL but also the confidence interval around those estimates. This

makes the approach more practical and suitable for real-life application.

• Taking the basis of the experimental and numerical case studies, the pro-

posed approach is perceived to be more efficient in the context of damage

prognosis in comparison with deterministic approaches. Also, the pro-

posed approach is experienced to be quite accurate under practical loading

conditions and robust against moderate-level noise contamination.

Eventually, it can be concluded that the proposed approach is a good can-

didate to estimate the RUL of civil infrastructure under fatigue loading with

sufficient accuracy and promptness. Future work will involve the use of the

proposed algorithm on real bridge structures for their RUL estimation.
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Chapter 4

Component-wise fatigue

estimation using substructure

monitoring approach

In the previous chapter, we explored the application of fracture mechanics in

predicting the fatigue life of different structures. This approach was primarily

employed to examine joints, as they are prone to fatigue damage at critical lo-

cations. For precise life prediction, it is imperative to accurately estimate the

boundary force acting on the bridge joint, which relies on ambient or vehicle

loading. However, when dealing with large civil structures, the process of fatigue

life prediction becomes computationally intensive and can lead to false alarms.

To tackle these challenges, we propose a substructure technique that allows for

monitoring specific subdomains of interest. Consequently, the induced bound-

ary force resulting from real-time loading can be estimated for these selected

subdomains. This technique has undergone rigorous validation through numeri-

cal and experimental investigations, with a focus on several key aspects. In this

chapter, our primary objective is to validate the effectiveness of the substructure

technique and assess the current condition of the subdomain system.

4.1 Introduction

In the real world, evaluating civil structures like buildings, and bridges often

requires mathematical models consisting of many dof s and unknown parame-

ters. However, measuring and identifying the entire structure simultaneously is
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a challenging task. While advanced SHM techniques have been developed to

address uncertainties and nonlinearity, they face difficulties when dealing with

large structures due to the increased dimensionality of the prediction models.

This higher dimensionality not only leads to computational challenges but also

increases the likelihood of false positive alarms. For the model-assisted esti-

mation approach, consequent high-resolution monitoring of the real structure

requires extensive instrumentation. With limited measurement channels (usual

for any SHM application), employment of high dimensional models affects the

observability Maes et al. (2021). This eventually renders the SHM algorithm to

be inefficient and unreliable.

An effective way of monitoring large structures is to monitor one subdomain

at a time instead of monitoring the entire structure at once. Numerically decou-

pling a structure into smaller substructures for efficient analysis of the structure

is known as substructuring. Large complex structures can be economically mon-

itored with the help of the substructuring techniques Koh et al. (1991) as it

reduces the required resources as well as the need for measurement data from

inaccessible locations. With the aim of model reduction de Klerk et al. (2008),

substructuring can be done in the physical (mass, stiffness, etc.), frequency

(Fourier transform), or modal (eigenvalue decomposition) domain. Nevertheless,

the substructures have been predominantly defined in the modal domain Hou

et al. (2013); Zhang and Jankowski (2017); Huang et al. (2021) with a few

exceptions Koh and Shankar (2003) where they are defined in the time domain.

Numerical substructuring does not physically isolate a subdomain from the rest,

but only fragments the entire domain numerically into smaller manageable do-

mains. Eventually, these fragmented subdomains individually should conform to

the force equilibrium or displacement continuity. The interaction among them

is generally incorporated in terms of the interface forces between the substruc-

tures Tee et al. (2003). These interface forces can later be estimated during the

re-coupling of the component substructures in order to realize the original entire

structure de Klerk et al. (2008).

Nonetheless, the external force inputs are hardly known/measured in real-life

problems, either explicitly or statistically. Such forces can however be estimated

as additional states Hou et al. (2011); Souid et al. (2009); Tatsis et al. (2021)

which will eventually increase the state dimension and consequently, the com-

plexity and efficiency of the state estimation. Moreover, health state assessment

for a structure is also sensitive to changes in internal forces (prestress) as well as
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boundary conditions Mendler et al. (2022). Boundary forces, present on the sub-

structural boundary dof s, have also been directly measured Weng et al. (2020)

as well as estimated by modeling them as modulated filtered white noise Yuen

and Huang (2018) or by constructing a relationship between the interface forces

and the measured responses Yang et al. (2021). Forward genetic algorithms have

been utilized to directly use the interface measurement data (sensor output) to

account for the interface interaction instead of estimating interface force Koh

and Shankar (2003); Trinh and Koh (2012).

4.2 Pilot study

Here, the proposed method by Koh and Shankar (2003); Trinh and Koh

(2012), termed the simple substructure technique, is employed as a pilot study

to identify substructural damage using a Bayesian filter. The objective is to

identify the magnitude of challenges encountered in the process of subdomain

monitoring and devise suitable breakthroughs to avert them.

4.2.1 State space formulation for the simple substructure

system

As stated in the last chapter, with Bayesian filter-based SHM algorithms, it

is necessary to represent the system (here the dynamics of the physical structure)

in the form of a state-space model. The Governing Differential Equation (GDE)

of the linear time-varying beam system can be defined with time-invariant mass

M, time-varying stiffness K(t), damping C(t) matrices and external force f(t)

as,

Mq̈(t) + C(t)q̇(t) + K(t)q(t) = f(t) (4.1)

where q(t),q̇(t), and q̈(t) are the displacement, velocity, and acceleration response

at the nodes. This definition is consistent with any mechanical system and can

be employed through a selection of corresponding mass, stiffness, and damping

properties of the system under consideration. Here in this pilot study, a simple

substructure technique is demonstrated on a numerical beam which is further

idealized (through proper calibration) as a lumped mass system as represented

in Figure 4.1.
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Figure 4.1: Cantilever beam model with substructure

The complete structural domain is further divided into a zone of considera-

tion as the “selected substructure” while considering the rest as the “rest of the

domain” connected through the boundary. With the subscripts i, r, and b, the

domain is categorized as internal, rest, and boundary. With this, the dynamic

equation of the complete beam structure is expressed as,
Mrr Mrb 0

Mbr Mbb Mbi

0 Mib Mii
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(4.2)

From Equation (4.2), the dynamics for the substructured domain can further be

isolated. The superscript s denotes the relevance of the internal element to the

structure as,

Ms
iiq̈

s
i + Cs

iiq̇
s
i + Ks

iiq
s
i = f si −Ms

ibq̈
s
b −Cs

ibq̇
s
b −Ks

ibq
s
b (4.3)

with the right side of Equation (4.3) inclusively considered as the external force

or disturbance acting on the substructure. The same when represented in state

space, can be defined as,

ẋs (t) = As (t)xs (t) + Bs (t)us(t) + Es (t) q̈s
b(t) + Gs (t) ẋs

b (t) + vs (t) (4.4)
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where, xs (t) =


qs
i

q̇i
s

, ẋs
b (t) =


qs
b

q̇b
s
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 0ni
Ini

−Ms
ii
−1Ks

ii −Ms
ii
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ii

 ,Bs (t) =

 0ni
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ii
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, Es (t) =

 0ni
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ii
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 0nb
0nb

−Ms
ii
−1Ks

ib −Ms
ii
−1Cs

ib

, and,

us (t) = f si . The additional term vs (t) represents process uncertainty originating

from the model inaccuracies and unmodelled inputs. Similarly, the measurement

equation can be presented as:

ys (t) = Hs(t)xs (t) + Ds(t)us (t) + Ls(t)q̈s
b (t) + Ss (t) ẋs

b (t) + ws (t) (4.5)

here, Hs (t) =

[
−Ms

ii
−1Ks

ii −Ms
ii
−1Cs

ii

]
, Ls (t) = −Ms

ii
−1M

s

ib, D
s (t) = Ms

ii
−1,

Ss (t) =

[
−Ms

ii
−1Ks

ib −Ms
ii
−1Cs

ib

]
, and ws (t) denoting measurement noise.

Equations (4.4) and (4.5) can also be represented in discrete time since responses

are typically discretely sampled in reality.

xs
k = As

kx
s
k−1 + Bs

ku
s
k + Es

kq̈
s
b,k + Gs

kẋ
s
b,k + vs

k

ys
k = Hs

kx
s
k + Ds

ku
s
k + Ls

kq̈
s
b,k + Ss

kẋ
s
b,k + ws

k

(4.6)

In order to compute the external force, all accelerations, velocities, and displace-

ments at the interface dof s ideally have to be measured Koh et al. (1991). It

is usually preferred to measure accelerations (by accelerometers) instead of ve-

locities and displacements. According to Trinh and Koh (2012), acceleration

measurement can be directly used to compute the interface force vector directly

in order to improve the accuracy of damage identification results. Based on mea-

sured interface acceleration, the following equations are used to embed a simple

numerical integration scheme to determine interface velocity and displacement:

q̇s
b,k+1 = q̇s

b,k +
∆t

2

(
q̈s
b,k + q̈s

b,k+1

)
qs
b,k+1 = qs

b,k +
∆t

2

(
q̇s
b,k + q̇s

b,k+1

) (4.7)
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4.2.2 State and parameter estimation with interacting

particle ensemble Kalman filter

For estimating the substructure, the health of the structure is parameterized

with ps number of location-based health indices (HIs), which are estimated us-

ing IPEnKF Sen et al. (2021); Aswal et al. (2021b) algorithm. IPEnKF is an

interactive filtering framework wherein two filters, namely Particle and Ensem-

ble Kalman filter interact in order to estimate the system states and parameters

conditioned to each other. A detailed discussion on this algorithm can be found

in Aswal et al. (2021b). The same has also been schematically detailed in Fig-

ure 4.2 for quick reference. An elaborated discussion is avoided for the sake of

brevity.

Figure 4.2: Flowchart of IPEnKF algorithm.

The state-space formulation for simple substructure systems has been de-

scribed in Section 4.2.1. Further, the states and parameters are estimated from

the formulated equations with the help of a set of ensembles and particles (ξ)

respectively. HI is defined as the reduction in the flexural rigidity of the el-

ement, (EI)dk = ξ.(EI)0k, from its initial health state, (EI)0k and is estimated

through the PF. This allows monitoring health corresponding ps locations of the

structure rendering the monitoring resolution depending on ps. The state (xk)

estimation is further approached through EnKF which is nestled within the PF.

The current health estimates are employed to define the current state/system or

measurement/output matrices, and thereby both filters interact with each other

leading to state estimates conditional to the health estimates.

PF employs a crude sample-based uncertainty propagation approach wherein

the prior estimates are propagated through the state evolution equation using
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Np independent particles (ξps×1), each of which can be considered as a real-

ization of the multivariate random variable HI. Accordingly, at kth time step,

the prior parameter estimates (and associated uncertainties) are propagated

through a state evolution equation with PF using a set of parameter parti-

cles ξ = [ξ1k−1, ξ
2
k−1, · · · , ξ

Np

k−1]ps×Np . During time evolution, each of the particles

(ξjk−1) evolve through random perturbations around their current position. A

Gaussian blurring is performed on ξjk−1 with a shift δξk = (1 − α)ξ̄k−1 and a

spread of σξ
k

1. The turbulence in the particle estimation is controlled with the

help of α by re-centering the particles towards their mean (ξ̄k−1), given by the

following,

ξjk = αξjk−1 + N (δξk, σ
ξ
k) (4.8)

Eventually, the particles evolved based on their likelihood against the current

time-step measurement. Thus, the particle evolution becomes independent of

the initial distribution assumed for ξ. Embedded EnKF for state estimation is

then applied to the propagated particles in order to estimate the likelihood.

For each jth particle, EnKF propagates Ne state ensembles through the sys-

tem model (cf. Equation (4.16)) conditioned on the current parameter estimate

(ξjk from Equation (4.8)). The predicted value of the states (xi,j
k|k−1) and trans-

formed measurement (zi,jk|k−1) corresponding to jth particle and ith ensemble is

given by,

xi,j
k|k−1 = Ai,j

k xi,j
k−1|k−1 + Bi,j

k ui,j
k + Ei,j

k q̈i,j
b,k + Gi,j

k ẋi,j
b,k + vi,j

k

yi,j
k|k−1 = Hi,j

k xi,j
k|k−1 + Di,j

k ui,j
k + Li,j

k q̈i,j
b,k + S i,j

k ẋi,j
b,k + wi,j

k

(4.9)

It should be noted that, from here on, superscript s is dropped for better read-

ability. Further, innovation for ith ensemble is calculated as the departure

of predicted transformed measurement from the output transformed measure-

ment sensor data εi,jk = yk − yi,j
k|k−1. The overall innovation is computed as

εjk = 1
Ne

∑Ne

i=1 ε
i,j
k . The predicted state and transformed measurement error co-

variance, Cj,xz
k , and the transformed measurement error covariance (Sj

k) is given

by,

Cj,xz
k =

1

Ne − 1

Ne∑
i=1

(
xj
k|k−1 − xi,j

k|k−1

)(
yj
k|k−1 − yi,j

k|k−1

)T
Sj
k =

1

Ne − 1

Ne∑
i=1

(
yj
k|k−1 − yi,j

k|k−1

)(
yj
k|k−1 − yi,j

k|k−1

)T
+ R

(4.10)

1A+BN(µ, σ) means A+Bz where z follows N(µ, σ)
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where, xj
k|k−1 and zjk|k−1 are the respective ensemble mean of the predicted states

and transformed measurement, respectively. From the covariances obtained from

Equation (4.10), EnKF gain is obtained as, Gj
k = Cj,xz

k (Sj
k)−1. Based on the

innovation mean, εi,jk , and the EnKF gain, Gj
k, the state ensembles are updated

as follows,

xi,j
k|k = xi,j

k|k−1 + Gj
kε

i,j
k (4.11)

Further, the likelihood, L(ξjk), of each particle is also calculated, as L(ξjk) =
1

(2π)n
√

|Sj
k|
e−0.5εjk

T
Sj
k

−1
εjk . For each jth particle, the normalized weight is computed

as follows,

w(ξjk) =
w(ξjk−1)L(ξjk)∑Np

j=1w(ξjk−1)L(ξjk)
(4.12)

Finally, particle approximations for states and parameters are estimated as fol-

lows,

xk|k =

Np∑
j=1

w(ξjk)xj
k|k and ξk|k =

Np∑
j=1

w(ξjk)ξjk (4.13)

The proposed approach has been provided as a pseudo-code (cf. Algorithm 2)

for the SHM of substructure systems.

4.2.3 Numerical Experiment - cantilever beam

The validation of the simple substructure is carried out using a numerical

model of a prismatic cantilever beam with specific geometric properties. The

beam has a span = 0.75 m, a width (w) = 0.025 m, and a depth (d) = 0.006 m.

The material properties include a mass density (ρ)= 7850 kg/m3 and an elas-

tic modulus (E) = 208 GPa. The beam is divided into 11 equal parts (cf.

Figure 4.3), and the length of each element is (le)=0.0682 m. In this study,

a lumped mass assumption is employed to replicate the continuous system for

the sake of simplicity. The mass and stiffness of each element are calculated

as 33ρwdle/140, and 3EIe/l
3
e following the reference of Reddy (1999). Here, Ie

=wd3/12 represents the moment of inertia of the beam section.

Figure 4.3: Schematic diagram of a cantilever beam model with its substructure
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Algorithm 2 Proposed SHM algorithm for simple substructures.

1: procedure IPEnKF(yk,Q,R)
2: Initialize particles {ξj0}, and state estimates {xi,j

0|0}
3: for <each kth measurement yk> do
4: procedure IP-EnKF({ξjk−1}, {x

i,j
k−1|k−1})

5: for <each particle ξjk> do

6: Evolve {ξjk−1} → {ξjk} ▷ as per Eq. (4.8)

7: procedure EnKF(ξjk, {x
i,j
k−1|k−1},yk) ▷ For each jth particle

8: for <each ensemble xi,j
k−1|k−1> do

9: Prediction: Propagate state to xi,j
k|k−1 ▷ Eq. (4.9)

10: Estimate measurement, zi,jk|k−1 ▷ Eq. (4.9)
11: end for
12: Calculate xj

k|k−1 and yj
k|k−1 ▷ as per Sec 4.2.2

13: Evaluate overall innovation (εjk) ▷ as per Sec 4.2.2

14: Compute covariances Cj,xz
k and Sj

k and Gj
k ▷ as per Sec 4.2.2

15: Correction: Correct predicted state estimate ▷ Eq. (4.11)
16: end procedure
17: Calculate the ensemble mean of the corrected state, i.e., xj

k|k
18: end for
19: end procedure
20: procedure Particle re-sampling({ξjk})
21: For each ξjk, calculate w(ξjk) ▷ Eq. (4.12)
22: Update: xk|k, ξk|k, as their weighted mean ▷ Eq. (4.13)
23: end procedure
24: end for
25: end procedure

The proposed algorithm is validated using a damaged beam that contains

a crack. In order to simulate the effects of a crack present in the substructure

element, an exponential function for stiffness reduction, denoted as EI(x), is

employed. Here, x represents the position along the rectangular beam element,

and this function accounts for the variations in stiffness as employed in this

chapter Christides and Barr (1984).

EI(x) =
EI

1 + C exp((−2β|x−lc|)/dc)
(4.14)

where C = (Ie − Ic)/Ic for Ic = w(d− dc)
3/12. The constant β, estimated from

experiments as in Christides and Barr (1984), is found to be 0.6667. To simulate

the crack in the third element of the substructure, specific crack attributes are

considered. The crack depth (dc) is set to 0.0045 m, and its position (lc) is

located at a distance of 0.375 m from the fixed end Khatir et al. (2018).
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The beam is subjected to an SWGN N (0, 1e−5N) force applied to each node

of the structure for a time window of 1 s, with a sampling frequency of 1000 Hz.

Acceleration responses are recorded at each node of the substructure element.

To simulate real-life scenarios, the dynamic response measurements collected at

the nodes are contaminated with SWGN of snr of 1%. The initial distribution of

the parameters followed a normal distribution N (1, 0.02), with the parameter α

set to 0.98 (refer to Equation (4.7)). In the numerical experiment, 2000 particles

are used for the PF, and 500 ensembles are utilized for EnKF.

In Figure 4.4, the convergence of parameters to their true values is shown

for both undamaged and damaged elements. Additionally, Figure 4.5 compares

the estimated and measured acceleration of an internal dof. The results indicate

that the simple substructure algorithm, assuming the availability of accelera-

tion response, accurately and precisely estimates the measurement response and

parameters for damaged cases, even under a noise severity of 1% snr. This al-

gorithm offers computational efficiency by monitoring only a specific subdomain

of interest while providing prompt estimation. The performance evaluation on a

numerical cantilever beam demonstrates that the simple substructure algorithm

is accurate, precise, and efficient.

(a) Identifying damage by time domain. (b) Identifying damage by mean calculation.

Figure 4.4: Estimated parameter of a substructure beam element for damage case
(dashed lines represent respective actual values).

4.2.4 Challenges with simple substructure techniques

The simple substructure-based monitoring approach described in this work

requires extensive monitoring of all the interfaces, which are typically inacces-

sible in real structures. Additionally, this approach creates interdependencies

among all the substructure models. To address these limitations and develop a
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Figure 4.5: Recreating the internal response from the estimated states.

component-wise monitoring algorithm, Yuen and Katafygiotis (2006) introduced

a probabilistic frequency domain approach. They employed Bayesian inference

to monitor only a specific subdomain of interest.

In their study, the monitored substructures were categorized as either stable

(supported subdomain with defined Dirichlet boundary conditions and no rigid

motion) or unstable (unsupported subdomain with interface forces and subjected

to rigid motion). The proposed approach was numerically investigated in a multi-

story building to estimate parameters using recorded substructure responses un-

der specific driving forces, such as a single-channel base excitation and a force

generated by a vibrating machine. However, while both stable and unstable sub-

structure types are discussed, the numerical experimentation focused solely on

stable substructures, overlooking the importance of modeling the rigid motion

of unstable substructures. Furthermore, due to its definition in the frequency

domain, the approach is not an online algorithm that can be implemented in

real-time.

4.3 Proposed substructure techniques

The present study proposes a novel computationally efficient online struc-

tural health assessment approach that bypasses the requirement of the interface

force quantities and is also applicable for stand-alone stable as well as unstable

substructures. The numerical and experimental studies have been performed on

unstable substructures where substructural boundaries are set as unknown/free.

The proposed approach utilizes output injection methodology Zhang and Zhang

(2018); Sen et al. (2021) in order to be robust to variations in the interface

force/acceleration with the help of known measurement data of the internal
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nodes of the particular substructure. This makes targeted health monitoring of

the substructure possible, without the need of monitoring the other substruc-

tures. An interacting filtering strategy combining PF and EnKF (IPEnKF), for

the estimation of health parameters and states respectively, has been utilized in

this attempt. Complexity in system estimation depends majorly on observabil-

ity issues (generally originating from lack of instrumentation) rather than the

physical size or geometric complexity of the system. Accordingly, both numerical

and experimental validations of the proposed algorithm have been undertaken

on a minimally instrumented simply supported beam. Further, noise sensitivity,

limiting damage severity, and required sensor density to assess the scalability

of the algorithm have also been investigated for the proposed approach. The

need for information on boundary conditions for SHM of a structure can also

be bypassed with the proposed algorithm, which has been demonstrated later in

this chapter with numerical and experimental studies.

4.3.1 Improvisation in dynamics of simple substructure

The isolated dynamics of the simple substructure described by Equation (4.3)

undergo additional modifications. The motion of the internal dof s, i.e., qs
i (t),

can further be represented as a summation of a quasi-static (qs,d
i ) and a relative

(qs,r
i ) component Koh and Shankar (2003), wherein the quasi-static component

(qs,d
i ) provides a rigid body motion to the subdomain Ωsi and relative component

(qs,r
i ) enables relative (/flexible) motion. Thereby, the overall response can be

defined as:

qs
i = qs,r

i + qs,d
i (4.15)

qs,d
i can further be obtained by forcing all the force components and time-

derivative terms in Equation (4.3) to zero while assuming the boundary to be

free, as

qs,d
i = −Ks

ii
−1Ks

ibq
s
b = ηsqs

b (4.16)

with ηs acting as a transmissibility term correlating boundary to internal re-

sponses. Further, substituting qs
i (t) in Equation (4.3), the following can be

obtained,

Ms
ii(q̈

s,r
i + q̈s,d

i )+Cs
ii(q̇

s,r
i + q̇s,d

i ) + Ks
ii(q

s,r
i + qs,d

i )

= f si −Ms
ibq̈

s
b −Cs

ibq̇
s
b −Ks

ibq
s
b

(4.17)
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Next, the relative dynamics of the substructure can be isolated from the above

equation by considering all terms pertinent to the rigid dynamics of the sub-

structure as an external force and subsequently addressing them jointly with

external and resisting forces (right side of Equation (4.17)).

Ms
iiq̈

s,r
i + Cs

iiq̇
s,r
i + Ks

iiq
s,r
i

= f si −Ms
ibq̈

s
b −Cs

ibq̇
s
b −Ks

ibq
s
b −Ms

iiq̈
s,d
i −Cs

iiq̇
s,d
i −Ks

iiq
s,d
i

(4.18)

Because of the general nature of a typical linearly damped mechanical system, its

system matrices are banded and sparse leading to very feeble interaction between

two distant nodes. With internal and boundary nodes segregated, the insignif-

icant off-diagonal terms associated with cross-coupling between these distant

node sets, i.e., internal and boundary nodes, therefore, can be ignored without

affecting the generality. Moreover, the impact of the ignored part of damping

will surely be overshadowed by the noise which is more significant, as verified

later on. Thus, the minuscule damping can be ignored in the modeling and can

still be accounted for in the model by including it in the modeling error process.

Thereby, the insignificant amount of damping force, i.e. (Cs
iiq̇

s,d
i + Cs

ibq̇b) has

been considered under the process uncertainty (discussed later) and removed

from the dynamics from now on.

Ms
iiq̈

s,r
i + Cs

iiq̇
s,r
i + Ks

iiq
s,r
i = f si −Ms

ibq̈
s
b −Ks

ibq
s
b −Ms

iiq̈
s,d
i −Ks

iiq
s,d
i (4.19)

Using Equation (4.16), qs,d
i can be substituted with qs

b as,

Ms
iiq̈

s,r
i +Cs

iiq̇
s,r
i +Ks

iiq
s,r
i = f si −Ms

ibq̈
s
b−Ks

ibq
s
b−Ms

iiη
sq̈s
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iiK

s
ii
−1Ks

ibq
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and, further can be simplified as,

Ms
iiq̈

s,r
i + Cs

iiq̇
s,r
i + Ks

iiq
s,r
i = f si − (Ms

ib + Ms
iiη

s)q̈s
b (4.21)

4.3.2 State-space formulation of substructure

Finally, the system dynamics defined in physical space can be cast in the

corresponding state-space, considering only the boundary acceleration response

as,

ẋs (t) = As (t)xs (t) + Bs (t)us(t) + Es (t) q̈s
b(t) + vs (t) (4.22)
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where, xs (t) =


qs,r
i

q̇i
s,r

, Es (t) =

 0ni

−(Ms
ii
−1M

s

ib + ηs)

 and other terms are

same as in Equation (4.4). The additional term vs (t) represents process uncer-

tainty (due to modeling inaccuracies, unmodelled input, damping, etc.), which

is modeled as an SWGN of constant covariance Qv. The measurable acceler-

ation responses q̈s
i correspond to total acceleration due to pseudo-static (q̈s,d

b )

and relative (q̈s,r
b ) response components combined as ys (t).

ys (t) = S{q̈s,r
i (t) + ηsq̈s

b(t)}

= S{Hs(t)xs (t) + Ds(t)us (t) + Ls(t)q̈s
b (t) + ws (t)}

(4.23)

where Hs (t) ,Ds (t), and Ls (t) are given in Equation (4.5) and ws (t) denotes

measurement uncertainty, described as SWGN of known statistics, R, as ws (t) ∼
N (0,R). S represents the Boolean selection matrix defining the measured dof s.

Since in reality, responses are discretely sampled, Equations (4.22) and (4.23)

are presented in discrete time with continuous variables reproduced with their

corresponding discrete-time entities.

Process model : xs
k = As

kx
s
k−1 + Bs

ku
s
k + Es

kq̈
s
b,k + vs

k

Measurement model : ys
k = Hs

kx
s
k + Ds

ku
s
k + Ls

kq̈
s
b,k + ws

k

(4.24)

Selection matrix S has been dropped from the formulation assuming its impact

has been adopted in the discrete-time matrices.

4.3.3 Interface robustness

With the aforementioned substructure system definition, the approach to-

ward achieving interface robustness is discussed next. Developed with the intent

to reject the impact of noise of unknown statistics from the state evolution,

the output injection technique Zhang and Zhang (2018) has been exploited for

eliminating the requirement of the interface measurements in this approach. By

suitably injecting a part of the measured output (ys
k) into the state transition

model, the imperative requirement of interface measurement can be alleviated.

Owing to the measurement equation (cf. Equation (4.24)), the following holds

true for an arbitrary bounded matrix Gs
k ∈ R.
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0 = Gs
k (ys

k −Hs
kx

s
k −Ds

ku
s
k − Ls

kq̈
s
b,k −ws

k) (4.25)

Adding Equation (4.25) to Equation (4.24) and further setting Lk = I−GkHk,

process model equation (cf. Equation (4.24)) can be modified as,

xs
k =As

kx
s
k−1 + Bs

ku
s
k + Es

kq̈
s
b,k + vs

k + Gs
k (ys

k −Hs
kx

s
k −Ds

ku
s
k − Ls

kq̈
s
b,k −ws

k)

=Ãs
kx

s
k−1 + B̃s

ku
s
k + Ẽs

kq̈
s
b,k + Gs

ky
s
k + ṽs

k

(4.26)

with Ãs
k = Ls

kA
s
k, B̃

s
k = Ls

kB
s
k −Gs

kD
s
k, Ẽ

s
k = Ls

kE
s
k − Gs

kL
s
k, and ṽs

k = Ls
kv

s
k −

Gs
kw

s
k. If Gs

k is chosen such that Gs
k = Es

k(Hs
kE

s
k + Ls

k)† with † denoting Moore-

Penrose Pseudo-inverse operation, Ẽs
k renders to a null matrix. Equation (4.26)

is then transformed to Equation (4.27), with no dependency on the boundary

measurements, q̈s
b,k, as,

xs
k = Ãs

kx
s
k−1 + B̃s

ku
s
k + Gs

ky
s
k + ṽs

k (4.27)

with, Equation (4.27) showing the dependence of xs
k on known states (xs

k−1), and

internal dof measured response, ys
k, only. Thus, with the proposed approach,

states of substructure s can be estimated without measuring the interface re-

sponse.

However, the measurement equation, as in Equation (4.24), is dependent on

the unknown interface response. To alleviate this, the measurement equation

has been transformed through pre-multiplying with a suitably chosen matrix

Ts
k such that Ts

kL
s
k = 0. This leads to the following transformed measurement

equation,

zsk = H̃s
kx

s
k + D̃s

ku
s
k + w̃s

k (4.28)

wherein, zsk = Ts
ky

s
k, H̃k = Ts

kH
s
k , D̃k = Ts

kD
s
k and w̃s

k = Ts
kR. Eventually,

this needs the estimate for the transformation matrix Ts
k which is the left null

space of Ls
k. Taking into account an unknown and unmeasured perturbation

in the measurement equation is a novelty compared to past output injection

approaches.
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4.4 Numerical experiment

The proposed approach has been validated with numerical experiments to

establish its efficacy. In this study, the numerical experiment is carried out using

a finite element model of a prismatic simply supported beam with geometric

properties: span = 3 m, area = 0.013× 0.013 m2, and material properties: mass

density (ρ) = 7850 kg/m3 and elastic modulus (E) = 200 GPa. The numerical

model of the beam is divided into 10 equal parts as elements, with each element

being modeled as a two-noded Euler-Bernoulli beam with two dof s at each node

(vertical and rotational). In the following, the usual simulation strategy adopted

in this study has been detailed. The states and parameters are estimated using

the formulated equations, employing an IPEnKF Kuncham et al. (2023), as

discussed in Section 4.2.2.

The model is simulated under an SWGN forcing (N (0, 1e−3N)) exerted on

each dof (both vertical and rotational) of the structure for a time window of 60 s.

Assuming the numerical beam is instrumented at its fifth element/substructure,

i.e., M5, the element is further discretized into six more elements. This leads

to the introduction of five internal nodes within element M5. The simulation

recorded the responses at these internal nodes (cf. Figure 4.6) at a sampling

frequency of 50 Hz (i.e. dt = 0.02 s). To mimic real-life scenarios, recorded

response measurements are further contaminated with SWGN of snr of 1%.

Figure 4.6: Schematic diagram of a simply supported beam model with its substruc-
ture.

For simulating damage scenarios, damage in the beam is introduced by re-

ducing the bending stiffness (EI) of the constituent element/s. The numerical

validation has been performed under several operational conditions: reduced in-

strumentation, plausible damage, noise severities, estimation for a longer time,

etc. For each of the cases, the reduction of EI, noise snr levels, damage location

and severity, sensor number, and simulation time have been altered accordingly

while keeping the sampling frequency fixed at 50 Hz. All simulation conditions

adopted in this study are detailed in Table 4.1.
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Table 4.1: Numerical simulations with different scenarios.

Objective
Scenario

name
Nsi

HIact

(internal)
Dl

snr

(%)

SS boundary

are fixed
S1-BC 10 0.6 m3 1

SS measurement

as SWGN
S2-SWGN 10 0.6 m3 1

SS boundary

are known
S3-BM 10 0.6 m3 1

Proposed SS

with robustness
S4-ROBUST 10 0.6 m3 1

Damage quantification S5-DQ

10 1 m3 1

10 0.8 m3 1

10 0.6 m3 1

10 0.2 m3 1

Damage location

away from the SS
S6-DL

10 1 M2 & M9 1

10 1 M4 & M6 1

10 0.2 m5 & M6 1

Double damage S7-DD 10 0.6 in m3 & 0.4 in m4 1

No. of interior sensors S8-NIS
8 0.6 m3 1

6 0.6 m3 1

Noise sensitivity test S9-NST

10 0.6 m3 2

10 0.6 m3 5

10 0.6 m3 10

Stability check S10-SC 10 0.6 m3 1

Here SS represent substructure, Nsi denotes the number of interior sensors and
Dl denotes location of damage induced.

The proposed approach has ignored the terms in the damping matrix cor-

responding to cross-coupling between the internal and boundary dof s assuming

them to be insignificant to cause any impact on the estimation. In this study,

a comparison is therefore drawn between two scenarios: one with and the other
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without considering those damping terms. The comparison is presented in Fig-

ure 4.7 wherein it can be verified that the neglected damping terms are in fact

very small and therefore should not affect the estimation if neglected. Figure 4.7b

presents the relative error between the presence and absence of damping which

corresponds to an snr ratio of 0.006%, much smaller compared to the minimum

level of sensor noise assumed, i.e. 1%.

(a) Comparison of displacement. (b) Error b/w estimated and measured states.

Figure 4.7: Comparison of states corresponding to the presence and absence of damp-
ing.

Initially, the value of the parameters (health indices) is assumed to be un-

known for both the undamaged and damaged cases. For system estimation

purposes, the initial distribution of the parameter is assumed to have a mean of

1 (corresponding to a 100% healthy state) with a 2% variance, i.e., N (1, 0.02).

Meanwhile, the tuning parameter, α is set to 0.99 (cf. Equation (4.8)) based on

previous experience with IPEnKF Sen et al. (2021). The response recorded from

the substructure under consideration (in this case M5) is used along with the

substructured predictor model. For the PF simulation, 2000 particles are used

while the EnKF is simulated with 100 ensembles.

4.4.1 Justification of the proposed algorithm

Prior to the validation of the proposed algorithm, the need for this approach

has to be established. For this, the same system response has been processed

with four different estimation approaches: 1. The substructured (M5) model

is assumed with fixed end nodes (boundaries), 2. M5 is assumed with SWGN

boundary forces, 3. M5 is estimated by supplying the actual boundary forces as

if they have been measured and finally, 4. M5 is estimated with the proposed
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algorithm. For all the cases the simulated measurement response is run through

the same IPEnKF strategy, but the substructure support FEM model is differ-

ent according to the mentioned cases. The comparative study is presented in

Figure 4.8, wherein it can be verified that while with the first two assumptions

(cf. Figures 4.8a and 4.8b), the estimation of the health indices is not possible,

the third assumption yielded prompt and smooth estimation (cf. Figure 4.8c).

However, for the fourth experiment which avoids the boundary estimation (cf.

Figure 4.8d), the results are found to be similar to the case when the actual

boundary measurements are supplied (case 3). This illustrates that the pro-

posed method has successfully alleviated the requirement of boundary response

measurement without sacrificing the estimation accuracy.

(a) Estimation assuming fixed boundary con-
ditions (S1-BC).

(b) Estimation assuming SWGN forcing on
the boundary (S2-SWGN).

(c) Estimation with boundary forces as
known (S3-BM).

(d) Estimation with the proposed method
(S4-ROBUST).

Figure 4.8: Estimation of health indices under different conditions (dashed lines rep-
resent respective actual values).

The predicted measurements obtained from the estimated states with the

proposed approach are further compared with their actual values obtained during

simulation. Figure 4.9a presents the comparison between the true states and

their estimation with the proposed approach. Figure 4.9b depicts the relative
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difference between the measured and estimated acceleration which corresponds

to an snr of 0.9%. Considering that uncorrelated uncertainties originating from

multiple sources are additive, a significant modeling error would result in an

increase of the observed uncertainty above the expected level, i.e. the 1% noise

level. Since the estimated snr is at 0.9%, similar to the noise level, it is deduced

that the modeling error can be considered negligible since it does not impact

significantly the response estimation and the proposed approach.

(a) Comparison of acceleration. (b) Error b/w estimated and measured.

Figure 4.9: Comparison of reconstructed internal response to the actual measurement
response.

4.4.2 Sensitivity to damage severity

Further, the sensitivity of the proposed algorithm for different levels of dam-

age severity is investigated. For this, four different damage levels are experi-

mented with, i.e. 20%, 40%, 60%, and 80% along with the undamaged condi-

tion. Accordingly, the element elasticity of one element of the numerical beam

is reduced by the corresponding percentage to simulate damage. It has been

perceived that the proposed approach is equally efficient for all the mentioned

damage levels while the estimation has been observed to be smoother (less fluc-

tuating) for higher damage levels, cf. Figure 4.10. Alongside, the undamaged

condition has also been detected precisely with no instances of false alarms.

4.4.3 False alarm sensitivity

Next, the false alarm sensitivity of the algorithm is investigated. In this

attempt, two aspects have been emphasized: 1. health deterioration owing to
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Figure 4.10: Detection of various damage levels (S5-DQ) in the element m3 with the
proposed approach (dashed lines represent respective actual values).

incurred damage/s in the substructure should be detected with precision (this

also refers to identifying healthy states causing no false positive alarm and multi-

damage scenario causing no false negative alarm) and 2. damage in other parts

of the structure should not get confused with damage in the monitored substruc-

ture and consequent raising of any false positive alarm. Moreover, the required

sensor density to ensure such robustness against false alarms is required to be

investigated.

Accordingly, two experiments are firstly performed in which adjacent and

distant elements of the monitored substructure are damaged while keeping the

domain of concern undamaged. The first experiment assumes damage in the

vicinity of the monitored substructure (M5), i.e., M4 and M6 while the second

experiment assumes damage in locations (M2 and M9) away from the concerned

substructure M5. The results are presented in Figure 4.11. It can be verified

that for both cases, the proposed approach identified the health indices of the

monitored substructure M5 and was not confused by the presence of damage else-

where in the structure. A separate case study (cf. Table 4.1) is also undertaken

wherein two adjacent elements are damaged: one within the monitored substruc-

ture (m5) while the other outside (M6) is the monitored domain. The proposed

approach is observed to detect damage in the monitored element without being

deterred by the damage in the adjacent element.

The capability of the proposed algorithm to assess health under multiple dam-

ages within the substructure has also been envisaged in order to establish that
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(a) With 40% damage in M4 and M6. (b) With 40% damage in M2 and M9.

Figure 4.11: False alarm sensitivity (S6-DL) with near and far damage locations
(dashed lines represent respective actual values).

the proposed method can identify the location and severity of damage distinctly

without suppression or false detection of damage elsewhere within the moni-

tored substructure. The estimation results are presented in Figure 4.12a which

establishes that the proposed approach performs efficiently even with multiple

damage scenarios without failure.

(a) Health assessment under multiple damage
scenario (S7-DD).

(b) Sensitivity to instrumentation density (S8-
NIS).

Figure 4.12: Performance of the proposed algorithm under different operating scenar-
ios (dashed lines represent respective actual values).

Moreover, a separate experiment is also performed under different instru-

mentation densities: a number of 6, 8, and 10 of measurement channels are

therefore employed for the estimation (cf. Figure 4.12b). It should be noted

that since a total of four channels of boundary measurements are being rejected

in this numerical experimentation, the employment of a minimum of five chan-

nels of measurement becomes imperative. Accordingly, the minimum number of

channels for the experiment is selected to be 6. However, it has been observed
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that mere 6 channels render the problem to be very ill-posed leading to missed

detection while 8 and 10 channels have successfully estimated the location and

severity of stiffness deterioration.

4.4.4 Noise severity

The noise severity has been investigated under four different noise levels, i.e.,

1%, 2%, 5%, and 10% snr. As expected, it has been observed (cf. Figure 4.13a)

that while the proposed algorithm has been successful in identifying deteriorating

health under the mentioned noise severity levels, higher noises are perceived to

cause more fluctuations in the estimation. Further, the stability of the algorithm

has been tested by subjecting it to longer time series data, and the pertinent

results are presented in Figure 4.13b. The insets in the right figure present the

evolution of HIs corresponding to one damaged and one undamaged element.

The health estimation has been observed to be non-divergent and smooth even

for prolonged usage, with no evidence of error accumulation or instability. The

temporal variation of particles (health indices) corresponding to both damaged

and undamaged elements has been plotted with a 95% confidence interval for a

better understanding of the Bayesian filtering-based approach.

(a) Sensitivity to noise severity (S9-NST).
(The dashed line represents the actual HI )

(b) Check for the stability of the algorithm
(S10-SC).

Figure 4.13: Noise sensitivity and stability performance of the proposed algorithm.

The performance of the proposed approach in terms of estimated HI and

corresponding error has been summarized in Table 4.1 for the case studies un-

dertaken. The estimation means over the last 100 iterations for HIs along with

their respective root mean square error (RMSE) are presented in Table 4.2.
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Table 4.2: Summarised performance of the proposed method under different scenarios.

Scenario

name

HIact

(internal)

Damage

assessment

HIest (mean)

(internal)

Error

(RMSE)

S1-BC 0.6 × –

S2-SWGN 0.6 × –

S3-BM 0.6 ✓ 0.57 0.06

S4-ROBUST 0.6 ✓ 0.61 0.02

S5-DQ

1 ✓ 0.97 0.04

0.8 ✓ 0.82 0.03

0.4 ✓ 0.40 0.02

0.2 ✓ 0.20 0.01

S6-DL

1 ✓ 0.98 0.02

1 ✓ 0.99 0.02

0.2 ✓ 0.29 0.14

S7-DD 0.6 - m3 & 0.4 - m4 ✓ 0.63 & 0.43 0.04 & 0.03

S8-NIS
0.6 ✓ 0.65 0.05

0.6 ✓ 0.82 0.22

S9-NST

0.6 ✓ 0.62 0.03

0.6 ✓ 0.64 0.05

0.6 ✓ 0.72 0.12

S10-SC 0.6 ✓ 0.61 0.02

4.5 Experimental validation - fixed beam

A laboratory experiment has been conducted on a fixed-fixed steel beam of a

rectangular cross-section to evaluate the performance of the proposed algorithm

on real-life structures. The relevant geometric properties as adopted are: span

= 1.5 m, area = 261.45 mm2, with depth 8.3 mm and a very rough estimate

of the initial material properties: mass density (ρ) = 7850 kg/m3 and elastic

modulus (E) = 190 GPa. The beam is held in place by clamping both ends,

which is then numerically replicated by assuming fixed-fixed boundary condi-

tions. The proposed model-based health assessment approach replicates the real
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beam numerically with a 2D Euler-Bernoulli beam. The experimental beam and

its numerical replica (or model) are firstly discretized into three equal parts as

component substructures (M1, M2, M3). The second substructure, i.e., M2, is

opted for independent health monitoring and is accordingly discretized into five

elements. This leads to the introduction of four internal nodes within substruc-

ture M2. The experimental details and schematic for the substructured domain

are presented in Figure 4.14a and Figure 4.14b.

(a) Experimental setup.

(b) Schematic numerical model of the real beam.

Figure 4.14: Experimental setup - fixed-fixed beam.

4.5.1 Bench-marking the undamaged beam

It is always advisable to calibrate the basic material properties of the numer-

ical FEM support model with respect to the real structure. Further, it accounts

for the non-homogeneous nature of the material property (Elastic Modulus) of

the structure. Accordingly, the undamaged beam is excited with an impact load,

and the obtained acceleration, sampled at 500 Hz, is used to estimate its frequen-

cies. In this attempt, the material density has been found to be quite consistent

with no need for any substantial calibration. However, the estimated frequencies

obtained from frequency domain decomposition (FDD) of the recorded response

obtained from the beam do not match with the numerically obtained frequencies

where the material elasticity is assumed to be uniform throughout the length of

the beam. The material elasticity is perturbed to approximately match (within
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acceptable limits) the numerical frequencies with the ones obtained experimen-

tally (cf. Table 4.3), and the calibrated uniform elasticity throughout the beam

length is estimated as 150 GPa.

Table 4.3: Comparison between frequencies obtained experimentally and numerically.

Data
Experimental Calibrated Relative

value numerical error (%)

Frequency (Hz)
ω1 16.36 16.43 0.43

ω2 46.02 45.71 0.67

The numerical model of the experimental setup is further benchmarked to

accommodate the non-homogeneous nature of elasticity in real-life structures.

This has been undertaken through the proposed health assessment algorithm.

Eventually, this entails the re-calibration of the modulus of elasticity for each

of the elements. For this, the substructure M2 is instrumented with four uni-

axial accelerometers placed at four equidistant internal nodes fetching structural

vibration response only in the vertical dof s at a sampling frequency of 500 Hz.

100 ensembles and 2000 particles have been selected for IPEnKF with α = 0.99

(cf. Equation (4.8)). Each element elasticity is initiated at 150 GPa which was

obtained through the aforementioned calibration approach. The system health

is estimated by assuming prior estimates for all the HIs as 1 with a standard

deviation of 0.02 and subsequently, the algorithm is allowed to update them

drawing inference from the time domain response data collected from the known

healthy state of the test structure.

This kind of material property calibration can be considered as health indices

benchmarking of a structure with an unknown health state. The HI estimation

results are presented in Figure 4.15a where it is observed that the HIs converged

to different values (mostly above 1). The model-predicted measurements are

also compared to the actual measurements obtained from the sensors in order

to validate the quality of the updated model. Since the experimental beam

structure did not have any visible damage, the change in the HIs has been

attributed to an incorrect presumption of elasticity. Accordingly, the element

elasticity of the concerned substructure has been updated (cf. Table 4.4). This

updated model has further been adopted as the undamaged benchmark for the

experimental beam.
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(a) Benchmarking of HIs for the undamaged
structure.

(b) Sensor v/s numerical model predicted
measurements.

Figure 4.15: Evaluation of substructure health indices and measurement data compar-
ison for undamaged beam.

Table 4.4: Initial, and benchmarked element elastic moduli.

Elastic modulus (E)
Substructure members

m1 m2 m3 m4 m5

Initial (GPa) 150.0

Calibrated (GPa) 165.7 165.4 168.9 164.2 158.3

4.5.2 Performance of the proposed algorithm

In the following, the damage has been induced in the third element (m3)

of the second substructure (M2). The experiment is intended to replicate the

local deterioration of the structural material leading to a loss in thickness (e.g.

due to spalling and scaling in concrete, corrosion and rusting in steel, etc.). For

this, some material from the beam has been scrapped along its depth, reducing

the depth of substructure element m2 down to 7.26 mm (average value over the

element length), which can roughly be attributed to 33.08% loss in the element

stiffness (HI = 0.67). The damage in the m3 element is shown in Figure 4.16.

The damaged beam has been sampled with four uni-axial accelerometers patched

at four internal nodes of the substructure at a constant sampling frequency of

500 Hz for 2 s with the rest of the hyper-parameters (required for the algorithm)

being the same as mentioned in Section 4.5.1.

The proposed approach is then employed to estimate the HIs corresponding

to each of the elements of M2 substructure without measuring the responses

at the substructural boundary nodes (n1 and n6, cf. Figure 4.14b). In accor-
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Figure 4.16: Experimental setup - damaged structure.

dance with Section 4.4.1, the assumption of SWGN forcing on the boundaries of

substructure, M2, yields an incorrect estimation of the health indices of the sub-

structural elements, cf. Figure 4.17a. The health estimation results, presented in

Figure 4.17b, illustrate that the algorithm is capable of estimation and localiza-

tion of damage without any false alarms. The estimate of the elasticity of sub-

structural element m3 approximately converges to 0.65 which closely matches its

expectation. Further, the HI estimation is perceived to be very prompt, with

the location of the weakened part getting detected within 0.3 s of its occurrence.

The health indicators corresponding to the other non-damaged elements have

also been observed to fluctuate below 1 corresponding to non-significant damage

(around 10%) which can, however, be ignored from a practical viewpoint and is

related to the inherent uncertainty of the statistical algorithm.

(a) Health estimation with the assumption of
SWGN forcing acting on the boundary.

(b) Health estimation with the proposed ap-
proach.

Figure 4.17: Health estimation in the concerned substructure - M2.

4.5.3 Robustness to boundary conditions

Apart from the application of the proposed algorithm for substructure mon-

itoring, a supplementary contribution of the proposed approach is its capability

to alleviate the requirement of exact boundary information. Typically struc-

tures are idealized with boundaries like free, fixed, or hinged while reality sel-
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dom conforms to this idealization. Typically, these boundary fixities have been

experienced to behave like a semi-rigid joint wherein the boundary forces or

displacements keep on changing during the operation of the structure. Such

complex behavior can either be modeled in detail, rendering the predictor model

to be complex and computationally inefficient for a recursive estimation plat-

form, or ignored making the algorithm vulnerable to inaccurate and sometimes

false estimation (false alarms). However, if the monitoring efficiency can be made

independent of such boundary forces, such complications can be averted. With

the proposed algorithm, the same can be achieved, detailed next.

To demonstrate this, the experimental focus is shifted from the previously

considered substructure to the entire structure. The beam is now simply divided

into 5 main elements and 4 uni-axial accelerometers are positioned at the internal

nodes as depicted in Figure 4.18a. The actual clamped fixed boundaries of the

beam are considered as the mentioned boundary dof s in the support FEM model

of the proposed approach, cf. Figure 4.18b with their forces and displacements

to be completely unknown to the investigator. Eventually, the model of the test

structure considers a free-free beam kept in equilibrium with unknown boundary

forces. Keeping all the experimental and algorithm hyper-parameters same as

before (cf. Section 4.5.1), the measurement data is analyzed with the proposed

algorithm in order to arrive at the health indices of the discretized elements.

Figure 4.19a shows that the algorithm has promptly detected the instance of

health deterioration in the element m3 as expected, establishing the robustness

of the algorithm against the boundary information.

The traditional approach is also applied to the entire structure, which con-

siders the boundary to be fixed, and the results are compared (cf. Figure 4.19b).

It can however be observed that with a presumption of fixity in the boundary,

the estimated health is more severe compared to the estimation provided by the

proposed approach. Since, through numerical experiments, it has already been

established that with the boundary condition properly known, the proposed ap-

proach matches the actual result, it can be concluded that the presumption of

the proper fixity was not exactly in the true sense. This obviously signifies the

importance of the boundary robustness of the proposed algorithm even for prob-

lems wherein the boundary behavior is presumed to be known while the reality

does not conform to the presumption. Eventually, with the proposed method,

uncertainty caused by boundary conditions is eliminated, making it more accu-

rate than the traditional approach.
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(a) Experimental setup.

(b) Schematic numerical model of the real beam.

Figure 4.18: Experimental setup - entire structure.

(a) Robustness of the proposed algorithm to
boundary conditions.

(b) Comparison of traditional and proposed
approaches.

Figure 4.19: Comparison between health estimation of the entire structure using tra-
ditional (known boundary conditions) and proposed (unknown boundary
conditions) SHM methods.

4.6 Summary

The conventional process of monitoring health for fatigue life assessment

typically involves deploying sensors across the entire structural domain to cap-

ture responses. However, applying the traditional approach to high-dimensional

structures poses challenges due to computational demands and the need for dense

instrumentation.
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To address these challenges, substructuring has emerged as an effective ap-

proach for monitoring large structures. This technique involves dividing the

structure into smaller subdomains, enabling more efficient and targeted analy-

sis. Domain-wise monitoring is particularly relevant for fatigue monitoring as

not the entire structure is equally susceptible to fatigue damage. In this con-

text, a simple substructure technique is utilized as a preliminary study to assess

its suitability for substructure-based monitoring approaches. A numerical ex-

periment is conducted on a cantilever beam to demonstrate the accuracy and

precision of the algorithm in estimating acceleration response and parameters

for damaged cases. However, it is important to acknowledge the limitations of

the simple substructure technique, such as the extensive monitoring required for

all interfaces and the interdependence of substructure models.

In this study, a novel Bayesian filter-based approach is introduced to ad-

dress the challenge of unavailable boundary measurements. An output injection

method is employed, making the approach stand-alone, computationally effi-

cient, and prompt in estimation. This approach also enables the utilization of

a reduced number of sensors, reducing overall monitoring costs. The proposed

approach combines two efficient filtering strategies, the PF and EnKF, enabling

parallelization of the estimation algorithm. The interface-independent estima-

tion approach allows complete parallelization and component-wise estimation,

making it suitable for distributed health monitoring systems. The effectiveness

of the proposed algorithm is validated through numerical and real experiments,

confirming its accuracy, precision, and efficiency in promptly detecting, localiz-

ing, and quantifying health deterioration.

Overall, the aim of this chapter was to develop a component-wise monitor-

ing approach that can offer computational and instrumentation benefits. Once

established as efficient, this framework can be further utilized for fatigue life

estimation in large structural domains.
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Chapter 5

RUL prediction based on crack

growth model

In the previous chapter, a method for estimating the health of individual com-

ponents within structures is discussed, aiming to reduce computational require-

ments and instrumentation demands. This chapter builds upon that by inte-

grating the Bayesian filtering-based approach discussed earlier into real-life civil

structures that exhibit visible cracks. Additionally, it addresses the challenge of

estimating the required boundary force, which may not be known or easily deter-

mined. The main focus of this chapter is the integration of substructure estima-

tion with online fatigue life estimation. To accomplish this, we have enhanced

the existing substructure technique to estimate the boundary force under vehicle

loading conditions. This involves modeling the interaction between the vehicle

and the structure within the dynamic simulation of the relevant bridge segment.

The effectiveness of this updated substructure technique has been verified through

both numerical simulations and experimental investigations. Finally, the pro-

posed technique is applied to estimate the fatigue life of a structure experiencing

visible crack growth.

5.1 Introduction

To accurately determine the RUL of a structure that has visible cracks, it is

crucial to identify the critical areas where the cracks are located. This task can

be achieved using a health assessment algorithm based on Bayesian filtering, as

discussed earlier in the preceding chapter. Once the cracked zone is isolated, it

becomes possible to monitor the growth of the cracks and assess the remaining
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lifespan of the structure. However, this monitoring process often requires the

entire structure to be monitored, which can be burdensome, requiring extensive

instrumentation and the use of expensive predictive models.

Alternatively, as described in Chapter 3, a simpler approach can be employed.

This approach involves analyzing only the cracked zone, assuming external forces

acting on its boundaries. However, this approximation may not provide a com-

prehensive solution for the entire structure. The ideal solution would involve

isolating the cracked zone as a subdomain and accurately estimating the bound-

ary forces, enabling a precise estimation of the RUL.

Chapter 4 introduced a practical technique known as substructure monitor-

ing, which is referenced by Kuncham et al. (2023). This technique involves the

numerical isolation of a relevant subdomain from the main structure and consid-

ering a specific set of boundary forces. By estimating the statistical properties

of these forces within the identified subdomains, a Bayesian framework can be

applied to predict the RUL of the entire bridge. This methodology focuses on

the critical subdomains, allowing for more efficient and accurate RUL estima-

tions. It facilitates targeted analysis of the areas that are most prone to fatigue,

ensuring that maintenance and structural integrity efforts are directed where

they are most needed.

In this chapter, the research focuses on estimating the RUL of the fatigue-

prone domain in a bridge that exhibits visible cracks. The aim is to establish the

correlation between the history of crack growth and fatigue loading and/or fre-

quency. To achieve this goal, a computationally efficient approach for estimating

forces at the substructure boundary is proposed. These forces are simulated by

solving the coupled dynamics of the vehicle, structure, and their interactions.

The methodology incorporates the output injection technique to enhance ro-

bustness. The reconstructed forces are then utilized in the IPEnKF algorithm

for RUL estimation. To validate the proposed algorithm, numerical experiments

are conducted on a simply supported bridge structure subjected to a half-car

model with four degrees of freedom. This framework offers a practical solution

for estimating the RUL of the fatigue-prone domain by considering the inter-

play between fatigue loading, boundary forces, and the remaining lifespan of the

bridge.

Subsequently, a real-time experiment is performed on the Chandra bridge,

situated in Sissu near Atal Tunnel, Himachal Pradesh. The proposed methodol-
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ogy is validated through this experiment, and the RUL of the bridge is predicted

by considering various assumed crack growth scenarios.

5.2 Bridge-vehicle interaction

The dynamic equations of the half-car model vehicle Duan and Yang (2013)

can be defined with mass Mv, stiffness Kv, damping Cv matrices, and exciting

force of vibration Fv as

Mvÿv + Cvẏv + Kvyv = Fv (5.1)

Cv =



cs1 + cs2 cs1a1 − cs2a2 −cs1 −cs2

cs1a1 − cs2a2 cs1a1
2 + cs2a2

2 −cs1a1 cs2a2

−cs1 −cs1a1 cs1 + ct1 0

−cs2 cs2a2 0 cs2 + ct2


,

Kv =



ks1 + ks2 ks1a1 − ks2a2 −ks1 −ks2

ks1a1 − ks2a2 ks1a1
2 + ks2a2

2 −ks1a1 ks2a2

−ks1 −ks1a1 ks1 + kt1 0

−ks2 ks2a2 0 ks2 + kt2


,

Mv =



ms 0 0 0

0 J 0 0

0 0 mt1 0

0 0 0 mt2


,Fv =



0

0

kt1yc1 + ct1ẏc1

kt2yc2 + ct2ẏc2


,yv =

{
ys θ yt1 yt2

}T

where ms is the mass of the body and frame of the vehicle (c.f Figure 5.1),

mt1,mt2 are the mass of the axle between the front and back wheel-set and the

tires, ks1, ks2, cs1, cs2 are the stiffness and damping between wheel-set and body

of the vehicle, kt1, kt2, ct1, ct2 are the stiffness and damping between of the tires,

a1, a2 are the distances from the center of gravity to the back/front wheel set,

yc1, yc2 are the displacement on the point which the bridge contacts with the
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front and back wheel-set in the vertical, ẏc1, ẏc2 are the velocity at the point

which the bridge contacts with the front and back wheel-set.

Figure 5.1: Schematic diagram of a bridge-vehicle interaction with substructure.

The modal equation for the bridge under half car model can be expressed as,

η̈n + 2ζnωnη̇n + ω2
nηn = −F1(t)ϕ1nδ1 − F2(t)ϕ2nδ2 (5.2)

ϕ1n =

√
2

ρl
sin

nπvt

l
, ϕ2n =

√
2

ρl
sin

nπ(vt− a)

l
,

δ1(t) =

{
1, 0 ≤ t ≤ l

v

0, else

, δ2(t) =

{
1, a

v
≤ t ≤ l+a

v

0, else

Here, 2ζnωn = µ
ρ
, ω2

n = EI
ρ

(nπ
l

)4, E is Young’s modulus of the bridge, I is the

moment of inertia of the cross-section, ρ is the mass of the bridge per unit length,

µ is the damping coefficient per unit length (l), F is the vehicle-bridge coupled

force on the bridge, η is modal coordinates of the bridge, n is the number of

modes considered for the vibration analysis and v is the velocity of the vehicle.

Based on the compatibility condition, the vehicle-bridge coupled function has
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been computed as,

a2ϕ1nδ1 + a1ϕ2nδ2
a

msÿs+
ϕ1nδ1 − ϕ2nδ2

a
Jθ̈ + ϕ1nδ1mt1ÿt1 + ϕ2nδ2mt2ÿt2+

η̈n + 2ζnωnη̇n + ω2
nηn = −[ϕ1nW1δ1 + ϕ2nW2δ2]

(5.3)

where Wi is the static load acting on the wheel due to the vehicle weight. W1 =

(ms
a2
a

+ mt1)g, W2 = (ms
a1
a

+ mt2)g and g is the acceleration due to gravity.

Further converting Equation 5.3 to the standard dynamic equation of the coupled

vehicle-bridge can express as follows

M(t)Ü(t) + C(t)U̇(t) + K(t)U(t) = Q(t) (5.4)

Here, mass M(t), stiffness K(t), damping C(t) matrices for the coupled system

with degrees of freedom as U = {ys θ yt1 yt2 η1 η2 · · · ηn}
T and Q(t)

is the force on the coupled system. For detailed derivation and correspond-

ing matrices, the reader may follow Duan and Yang (2013). Using the mode

shape matrix of the bridge structure, modal domain response U can further be

converted to time domain response denoted as q. Accordingly, q̈, i.e. bridge

acceleration responses, are collected as measurements from where inference can

be drawn during RUL estimation. Eventually, by analyzing the responses, the

fatigue-prone area can be identified which can further be isolated as a substruc-

ture in order to estimate the forces acting on its boundaries.

5.3 State space formulation for boundary force

estimation

Substructure technique (for detailed derivation refer to Section 4.3.2) is used

to derive the state space formation of a vehicle-bridge structure (cf. Equa-

tion (5.4)) as,

Process model : xs
k = As

kx
s
k−1 + Bs

ku
s
k + Es

kq̈
s
b,k + vs

k

Measurement model : ys
k = Hs

kx
s
k + Ds

ku
s
k + Ls

kq̈
s
b,k + ws

k

(5.5)

In the context of Section 4.3.2, the matrices xs (t) ,As,Bs, and Es remain un-

changed, while only us (t) = Fint
bv is modified to account for the vehicle-bridge
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interaction. Fint
bv denotes the force acting on the internal nodes of the substruc-

ture element while q̈s
b is the force acting on its boundaries. In order to eliminate

the interface forces from the state equation, the output injection technique Zhang

and Zhang (2018) is used and the process model and measurement model are

modified (for detailed derivation refer to Section 4.3.3) as,

xs
k = Ãs

kx
s
k−1 + B̃s

ku
s
k + Gs

ky
s
k + ṽs

k (5.6)

Hence, the Bayesian filtering approaches utilized in Chapter 4 can be employed

to estimate the interface response without direct measurements. In this study, to

account for real-life complexity, the stiffness parameters of the bridge have been

assumed to be unknown and are therefore estimated simultaneously with the

system states xs
k. This requires the application of the above-mentioned IP-EnKF

algorithm, which decouples the estimation of states and parameters, utilizing

separate filters for each. Subsequently, with the system states estimated, drawing

inferences from measurements, the boundary acceleration can be reconstructed

as follows:

q̈s
b,k = [ Ẽs

k ]−1[ xs
k − (Ãs

kx
s
k−1 + B̃s

ku
s
k + Gs

ky
s
k + ṽs

k) ] (5.7)

The boundary force is then estimated by applying the inertial force as,

fb,k
s = Mbbq̈

s
b,k (5.8)

A pseudo-code of the proposal is presented in Algorithm 3.

5.4 Numerical study

To validate the proposed algorithm, dynamic analysis has been performed

on a simply supported box-girder bridge subjected to a half-car moving vehicle

at a constant speed (V) of 20 kmph. Details of the bridge and vehicle model

are given in Table 5.1. The bridge span of length l = 60 m is divided into 20

equal parts as elements which are further defined with a two-node 4 dof s Euler

Bernoulli beam model. Following, the fatigue-prone zone in the bridge span is

identified and the proposed algorithm is employed considering this domain as

the monitored substructure (cf. Figure 5.1). The assumed parameters for the

numerical simulation are given in Table 5.1.
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Algorithm 3 Proposed boundary force estimation algorithm for substructures

1: procedure IP-EnKF(yk,Q,R)
2: Initialize particles {ξj0}, and state estimates {xi,j

0|0} ▷ Initial values

3: for <each kth measurement yk> do
4: procedure IP-EnKF({ξjk−1}, {x

i,j
k−1|k−1}) ▷ Initiating EnKF

5: for <each particle ξjk> do ▷ Initiating PF

6: Evolve {ξjk−1} → {ξjk} ▷ Equation (4.8)

7: procedure EnKF(ξjk, {x
i,j
k−1|k−1},yk) ▷ For each jth particle

8: for <each ensemble xi,j
k−1|k−1> do

9: Prediction: Propagate state to xi,j
k|k−1 ▷ Equation (5.5)

10: Boundary measurement, q̈i,j
b,k|k−1 ▷ Equation (5.7)

11: Estimate measurement, yi,j
k|k−1 ▷ Equation (5.5)

12: end for
13: Mean calculation:
14: xj

k|k−1, y
j
i,k|k−1 ▷ as per Section 4.2.2

15: Propagated boundary measurement, q̈j
b,k|k−1 =

1
Ne

∑Ne
i=1 q̈

i,j
b,k|k−1

16: Overall innovation εjk ▷ as per Section 4.2.2

17: Estimated boundary force F̈j
b,k|k−1 ▷ Equation (5.8)

18: Covariance calculation: Cj,xy
k ▷ Equation (4.10)

19: Correction: ▷ as per Section 4.2.2
20: Innovation error: Sj

k & EnKF gain gj
k

21: Update predicted state estimate xi,j
k|k

22: end procedure
23: Calculate the ensemble mean of the corrected state, i.e., xj

k|k
24: end for
25: end procedure
26: procedure Particle re-sampling({ξjk}) ▷ For each ξjk
27: Evaluate w(ξjk). ▷ Equation (4.12)
28: Update: State xk|k and Parameter estimates θk|k ▷ Equation (4.13)
29: end procedure
30: end for
31: end procedure

The bridge structure is excited under the aforementioned vehicle loading, and

acceleration responses are sampled from the chosen substructure nodes (internal

dof s only) at a sampling frequency of 50 Hz for 20 s under its undamaged state.

The simulated signal is further contaminated with SWGN having a snr of 1% in

order to emulate real-life situations. The initial distribution of the parameters

is assumed to be N (1.3, 0.01), and α is set to 0.98. Numerical experiments were

conducted using 2000 filter particles for PF and 100 ensembles for EnKF.

The proposed algorithm is validated under undamaged conditions wherein

the location-based undamaged health parameters (normalized elasticity of each
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Table 5.1: Bridge and vehicle parameters for the numerical study

Parameters of the bridge

EI (N −m2) 2.12 ×1011 ρ (kg/m) 3.03 ×104 µ 0.02

Parameters of the vehicle

ms (kg) 38500 J (kgm2) 2.446 ×106 mt1(kg) 4330

mt2(kg) 4330 ks1(N/m) 2.535 ×106 ks2(N/m) 2.535 ×106

kt1(N/m) 4.28 ×106 kt2 (N/m) 4.28 ×106 cs1 (N/sm) 1.96 ×105

cs2(N/sm) 1.96 ×105 ct1(N/sm) 9.8 ×104 ct2(N/sm) 9.8 ×104

a1(m) 4.2 a2(m) 4.2 V (kmph) 20

substructure element) are considered to be unknown. The mean of the initial

estimate is considered to be 1.3 which is further estimated to check if it con-

verges to its true value, i.e. 1. In Figure 5.2a, the smooth convergence of all

five substructure element elasticity (normalized) to their true values can be ver-

ified. The comparison between estimated and actual (simulated) acceleration

of an internal dof is presented in Figure 5.2b. Similarly, estimated, and ac-

tual boundary force (simulated) is compared in Figure 5.3. In both cases, close

matching can be observed throughout the signal length which can also be ver-

ified from the scatter plots presented in additional. The proposed algorithm

has undergone rigorous validation through numerical experiments, which have

conclusively demonstrated its precision and accuracy in estimating boundary

forces.

(a) Estimation of health indices (dashed
lines represent respective actual values.)

(b) Comparison of internal response recre-
ated from the estimated states.

Figure 5.2: Performance of the proposed algorithm under vehicle loading.
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Figure 5.3: Comparison of boundary force recreating from the estimated states to the
actual excitation.

5.5 Experimental study on a real bridge

To accurately predict the RUL of a structure considering crack growth, it

is crucial to estimate the boundary forces of a real bridge structure using the

proposed method. In order to achieve this, a comprehensive series of field experi-

ments were conducted on an actual truss bridge known as the “Chandra bridge”

(cf. Figure 5.4. The Chandra Bridge is a highway bridge situated over the

Chandra River, which is a tributary of the Chenab River. It is located just after

the North portal of the Atal Tunnel in Himachal Pradesh, India. The bridge is

designed and constructed by the Border Roads Organisation (BRO) in 2020. It

is a warren-type truss bridge with vertical members, measuring 100 m in length,

12 m in width, 10 m in height, and featuring a main span of 60 m. Equipped

with two lanes, the bridge has a daily capacity of approximately 4500 vehicles.

Figure 5.4: Chandra bridge, near Atal tunnel, Teling, Himachal Pradesh, India.

The truss section of the bridge is supported by a pin at one end and roller sup-

port at the other. The bearings were thoroughly examined, and due to the bridge
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being recently erected, no issues related to locked bearings were identified. On

both sides of the river, the truss section is approached by two separate concrete

girders, which are detached from the truss using a construction joint of ade-

quate width. Consequently, these two structural components can be distinctly

regarded as separate entities, as they do not impact each other’s performance.

Subsequently, the instrumentation strategy and response sampling methodology

employed for the bridge will be presented and detailed.

5.5.1 Sensors installation and data acquisition for bridge

monitoring

Wireless accelerometers and strain sensors were employed to conduct exper-

iments intended at monitoring the condition of the bridge. The wireless triaxial

accelerometers (G-LINK-200-8G) selected for this purpose are suitable for low-

frequency applications within the range of 0 − 200 Hz. This frequency range is

typical for structural monitoring, considering that most structures have domi-

nant frequencies well below 200 Hz.

The wireless accelerometers were strategically placed at the nodes of the mid-

span deck, and their responses were sampled using a base station (WSDA 2000,

Lord Micro-strain). Vertical vibrations were specifically measured after an initial

inspection revealed that vibrations in other directions were not as significant

compared to vertical vibrations. The positions of the sensors are indicated in

the schematic presented in Figure 5.5. Acceleration time history signals were

recorded from nine wireless sensors located at the web joints (at deck level) of

the bridge. The selection of sensor locations, both for the actual measurements

and later for numerical replication, is based on the understanding that vehicular

loads primarily redistribute through the web joints to other truss members.

Figure 5.5: Schematic diagram illustrates the placement of sensors on the truss bridge.

Considering that the first three dominant modes of the bridge are expected

to have frequencies below 64 Hz, the sampling frequency for all accelerometers
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is set at 128 Hz. Additionally, strain measurements were recorded from various

locations on the structure to determine the nominal strain levels under regular

service loading. This information is subsequently used to calculate fatigue cycles

using rain-flow counting methods. The strain gauges, specifically Type ICP

Piezoelectric (Model no:740B02, PCB), is positioned at one of the web joints.

The sixth node (A6) is identified for strain sampling, and three strain gauges

were attached to record axial strain profiles in three directions of the adjoining

members. The dynamic strain data were sampled using a Dewesoft Krypton-

STG data acquisition system, with the response recorded for the same duration

and sampling frequency as the accelerometers. Acceleration and strain profiles

recorded under vehicle loading are shown in Figure 5.6.

(a) Acceleration profile.

(b) Strain profile.

Figure 5.6: Structural responses are recorded through sensors.
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5.6 Numerical replica of Chandra bridge

The truss segment of the Chandra bridge is modelled using the commercial

finite element modelling software CSi-Bridge. A 3D FE model is created to

replicate the middle span of the bridge, which supports the truss segment. A

schematic of the model is shown in Figure 5.7. The members are modelled as

truss elements, and their geometries are adapted according to the specifications

provided in Sharma and Sen (2023). The boundary constraints observed in the

actual bridge, such as pin support at one end and roller support at the other

end, are replicated in the model. The concrete deck is modelled using shell

elements with a membrane thickness of 0.3 m. The floor system, consisting

of the concrete deck and longitudinal stringers, is modelled as a series of beam

elements connected to a node at the mid-span of each floor beam. In CSi-Bridge,

a body constraint ensures that all constrained joints move together as a three-

dimensional rigid body, meaning that they cannot displace relative to each other.

The initial assumptions for various model parameters are provided in Table 5.2.

Ultimately, this preliminary model needs to be calibrated to accurately represent

the real structure as its DT.

Table 5.2: Parameters calculated from experimental and assumed data

Parameters Elastic modulus (GPa) Poisson’s ratio Mass Density (Kg/m3)

Steel 210 0.3 7850

Concrete 33.5 0.2 2500

Figure 5.7: Development of a 3D model of the Chandra bridge using CSi bridge FEM
software.
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5.6.1 Calibration of the DT model of Chandra bridge

The material elasticities of steel and concrete are believed to be the key

parameters influencing the frequencies of the real bridge. Consequently, a cali-

bration study is conducted to identify an optimal set of elasticities that minimize

discrepancies in the natural frequencies and acceleration profiles. To assess the

acceleration profiles, the numerical model is simulated with a vehicle model, and

its response is compared to the actual recorded response from the real bridge.

The selected recorded response predominantly corresponds to vehicle loading

conditions.

An optimization procedure is employed, with the elasticity of steel and con-

crete as the control parameters, to minimize errors in the first three simulated

frequencies and acceleration profiles. The optimized Young’s Modulus for steel

is determined to be 195 GPa, while Young’s Modulus for concrete is calibrated

to 32.8 GPa.

Through this calibration study, it is ensured that both the real bridge and

its numerical model exhibit similar dynamic properties and produce comparable

vibrational responses. Table 5.3 presents a sample comparison between the esti-

mated frequencies from the real structure and the corresponding model-predicted

values. To map the acceleration profile, a commercial vehicle (cf. Table 5.4) ac-

cording to IRC 3:1983 (Type 3) standards is considered to simulate the acceler-

ation in the DT model. The acceleration signal recorded from the real structure

and the numerical model are compared in Figure 5.8, and the error found is of

the order 9.91% snr. These results confirm that the updated model replicates

the actual modal properties and time domain responses with sufficient accuracy

and precision. Based on this, the final calibrated model is considered a DT of

the real structure, enabling the identification of critical elements of the bridge

structure under vehicle loading.

Table 5.3: Comparison between frequencies obtained experimentally and numerically.

Data
Experimental Calibrated Relative

value numerical error (%)

Frequency (Hz)

ω1 2.563 2.568 0.20

ω2 5.125 5.170 0.88

ω3 6.719 6.905 2.77
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Table 5.4: Parameters of commercial vehicle.

Weight No. of axles Speed of truck Axle width Front axle Rear axle

21 Ton 3 11.1 m/s 2.5 Single tyre Dual tyre

Figure 5.8: Comparison of experimental and numerical acceleration profile.

5.6.2 Estimation of boundary forces of selected elements

To assess and forecast the fatigue life of the Chandra bridge under crack

growth conditions, special emphasis is placed on one of the floor beams where a

crack has been assumed. In Chapter 3, we delve into the simulation of crack

growth, which requires utilizing material properties, section properties, and

boundary forces. Achieving precise calculations for crack growth becomes chal-

lenging due to the presence of the crack, making it difficult to monitor the current

state of the constituent material properties of the cracked member. However,

an alternate arrangement can be made by considering the material properties of

the adjacent element to the substructure. This is justified by the likelihood of

similar weathering effects and operational loading experienced by the two ad-

jacent members, leading to similar material degradation. Hence, the adjacent

element is treated as the substructure, and its responses are sampled to estimate

the current state of material properties.

To apply the proposed approach, the selected element is defined by five in-

ternal nodes and two boundary nodes. In accordance with real-life conditions,

acceleration responses under vehicle load are sampled from the internal nodes

at a sampling frequency of 128 Hz. Additionally, the responses are contami-

nated with SWGN at an snr of 1% to replicate realistic scenarios. Subsequently,

the proposed algorithm is utilized to estimate the boundary forces based on the

current health condition, using the internal acceleration responses.

124



The proposed approach utilizes location-based HIs as the health parameters,

which range from [0; 1]. For system estimation, following the algorithm described

in Algorithm 3, the initial distribution of the HIs is assumed as N (1, 0.01). This

is done to benchmark the current health of the bridge, with the parameter α set

to 0.99 (cf. Equation (4.8)). PF simulations are conducted with 1000 particles,

while EnKF simulations are performed with 50 ensembles.

The proposed algorithm is validated using a benchmarked model, where the

location-based undamaged health parameters are unknown. The initial estimate

is set to a mean value of 1, which is then estimated to check for convergence to

its true value. Figure 5.9a shows the smooth convergence of all five substructure

element elasticities (normalized) to their true values. The comparison between

the estimated and actual (simulated) acceleration of an internal dof is presented

in Figure 5.9b.

(a) Estimation of health indices (dashed
lines represent respective actual values.)

(b) Comparison of internal response recre-
ated from the estimated states.

Figure 5.9: Performance of the proposed algorithm on the benchmarked model under
vehicle loading.

(a) Time series data of measured and esti-
mated boundary force.

(b) Correlation plot of measured and esti-
mated boundary force.

Figure 5.10: Comparison of boundary force of a benchmarked model.

Similarly, the estimated and actual boundary forces (simulated) are compared
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in Figure 5.10a. A close match can be observed throughout the signal length, as

also evident from the correlation plot presented in Figure 5.10b. The proposed

algorithm has undergone rigorous validation using a benchmarked model, which

conclusively demonstrates its precision and accuracy in estimating boundary

forces.

5.6.3 Updated fatigue crack growth model

Chapter 3 presented a crack growth model for the bridge joint under constant

amplitude load in tension and compression. However, in reality, the load is

not constant and accordingly, fatigue stress history needs to be estimated for

prognosis purposes. To determine the number of stress cycles, the rain flow

counting algorithm is used to convert the boundary forces into equivalent stress

levels. This information is then applied to the selected location to determine

the actual crack growth condition under vehicle loading. To implement this

technique, the selected member is assumed to have an initial crack length of

0.1 m. The algorithm used in Chapter 2 is utilized to calculate the SIFs of

the selected section. However, previously it only considered Mode-I dominance.

To accurately simulate the crack propagation rate in the selected member, the

contribution of Mode-II and Mode-III is also taken into account by substituting

∆K with an effective stress intensity factor range ∆Keq Silva et al. (2017), given

as Milne et al. (1988); Wang et al. (2020b):

∆Keq =
√

∆K2
I + ∆K2

II + β∆K2
III/(1 − υ) (5.9)

where KI , KII , and KIII are the stress intensity factors for Mode-I, Mode-II,

and Mode-III scenarios, respectively. υ represents the Poisson’s ratio of the steel

structure, and β is usually assumed to be 1.0 Zhao et al. (2022). Equation (5.9)

can be used to estimate the equivalent stress intensity factor ∆Keq.

With this direction and driving force, the ABAQUS-Python script is updated

to incorporate the redefined crack front, and iterations are continued until the

critical conditions are reached (corresponding to KIC = 158MPa
√
m Djoković

et al. (2015)), resulting in a series of SIFs corresponding to various crack sizes.

The numerically obtained data is then curve-fitted to establish a correlation

between ∆Keq and a using a polynomial equation.

The Paris model parameters used for the simulation are obtained from the
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works of Zhao et al. (2022). In Chapter 3, Section3.4.1, a detailed discussion

is provided regarding the preliminary assumptions made about the state and

parameters of the assumed material. The characteristics and distribution of

these parameters, as well as the assumed fracture parameters, are presented in

Table 5.5.

Table 5.5: EKF parameters of a critical element of the Chandra bridge.

Parameters Type Numerical values

ao True value 0.1 m

m True value 3

Θ True value 24.73

a0|0 Initial estimate N (0.1, 0.05)

m0|0 Initial estimate N (1, 0.01)

Θ0|0 Initial estimate N (14.82, 0.1)

∆Kth Deterministic 2 MPa
√
m

∆KIC Deterministic 158 MPa
√
m

σ′
f Deterministic 450 MPa

vcr Deterministic 5.25 × 10−5 mm/cycles

The proposed filtering algorithm is then employed to estimate the fatigue

life based on the crack growth history simulated from this numerical model.

The simulated crack growth history is further contaminated with 1% snr, as

mentioned previously.

With the proposed approach, the crack size is simultaneously estimated while

estimating the relevant Paris model parameters. The results of both the param-

eter estimation and crack size estimation are presented in Figures 5.11. These

results demonstrate the convergence of the mean estimate along with the asso-

ciated estimation uncertainty. It is evident from the results that the estimates

are both prompt and precise.

Furthermore, the crack size estimation and prognosis, as well as their sensi-

tivity to data size under 1% noise contamination, are presented in Figures 5.12a

and 5.12b. These figures illustrate that the proposed method can effectively

perform crack prognosis well in advance.
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(a) The mean estimate for m. (b) Parameter distribution for m.

(c) Mean estimate for Θ. (d) Parameter distribution for Θ.

Figure 5.11: Convergence of estimated parameters m (above) and Θ (below) for the
case of critical element of the Chandra bridge.

(a) Estimation and prognosis of crack
growth with different levels of data.

(b) The relative error in predicting the
number of cycles.

Figure 5.12: Estimation and prognosis of critical element of the Chandra bridge.

5.6.4 RUL prediction under different loading scenarios

The RUL prediction of a critical member in the bridge structure is estimated

based on the life index (LI) calculated from the crack growth model. The LI is

determined using the equation:

LI = 1 − acu/acr (5.10)
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where acu represents the current crack length and acr is the critical crack length.

acr = 0.45 m, is calculated based on the KIC of the material. The value of LI

approaching zero, indicates the imminent failure of the structure. The number

of cycles obtained from the above approach is converted into a time period based

on the number of cycles experienced by the structure per year.

The dashed line in Figure 5.13 represents the true value calculated based on

the simulation of the crack growth model till its failure. In this case, the RUL of

the structure is estimated using the crack growth model with 50% of the avail-

able data and under assumed traffic loading conditions. With the initial crack

size assumed, the actual RUL of the critical structural member is obtained as

8.5 years, while the proposed algorithm estimated it to be 7.9 years, sufficiently

close to its real value. The estimated RUL is also lower than the actual value,

indicating a conservative estimation by the proposed algorithm.

Figure 5.13: Service life of a critical element of the Chandra bridge.

Moreover, two distinct scenarios are examined: an optimistic one where traf-

fic loading is reduced by 20%, and a pessimistic one where traffic loading is

increased by 20%. The findings reveal a substantial impact on the RUL due to

changes in loading conditions. Specifically, under the optimistic and pessimistic

scenarios, the algorithm estimated the RUL to be 9.86 years and 6.57 years, re-

spectively. These values are not the mean value; instead, they are converging to

a deterministic value. This underscores the significance of traffic modulation in

controlling the RUL of the considered bridge when dealing with crack presence in

real-world situations. Furthermore, for the present case, the implementation of

the optimistic scenario, which reduces operational loading, has been numerically

demonstrated to extend the service life of the structure.

129



5.7 Summary

This chapter is dedicated to the integration of a substructure monitoring-

based SHM approach for fatigue life assessment, particularly for large civil struc-

tures with visible cracks. The primary objective is to achieve precise estimates

of fatigue life while considering crack growth, which relies on accurately estimat-

ing the boundary force in the substructure model. To achieve this, an improved

substructure technique capable of estimating the boundary force under vehicle

loading conditions has been developed and validated through numerical simula-

tions and experimental investigations.

The proposed approach utilizes information about the current structural

health and boundary forces to estimate the fatigue life of a bridge experienc-

ing visible crack growth. By establishing a connection between traffic loading

and forces exerted on the structure through appropriate modelling of the vehicle-

structure interaction, a comprehensive and accurate approach for estimating fa-

tigue life in real-life scenarios is provided. The effectiveness of the proposed

algorithm is validated through numerical experiments, showing precision and

accuracy in estimating boundary forces.

To further validate the approach, field experiments were conducted on a truss

bridge located in Himachal Pradesh, India. Wireless accelerometers and strain

sensors were employed to monitor the bridge’s condition, and the collected data

is thoroughly analyzed. A DT model is implemented using CSibridge software to

analyze the Chandra bridge, with the floor beam identified as the critical element

based on Miner’s rule. The filtering-based method is then used to estimate

the RUL of the bridge, taking into account the crack growth in the critical

element. To improve the model’s accuracy, the crack growth model is updated

to incorporate the consideration of Mode III SIF.

The results demonstrated close agreement between the estimated and ac-

tual RUL, showcasing the effectiveness of the proposed algorithm. Moreover,

this chapter explores the influence of different loading conditions on fatigue life

estimation and proposes implementing a suitable reduction in operational load

to prolong the service life of the structure. Overall, the proposed approach pro-

vides a comprehensive framework for accurately predicting fatigue life in real-life

scenarios.
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Chapter 6

RUL prediction for bridges using

substructure technique in

crack-free conditions

In the field of predicting the RUL of large civil structures, existing methods

typically treat the entire structure as a whole and assume a constancy in struc-

tural health at any stage of monitoring. This aspect of disregarding the current

health status, especially for aging structures may lead to a non-conservative esti-

mate for RUL. To overcome this limitation, a novel component-wise monitoring

approach is introduced for estimating the fatigue life of civil structures, building

upon the substructure monitoring approach described in the previous chapter.

This approach incorporates an IP-EnKF algorithm, which accounts for the cur-

rent health status of the structure. The RUL is further estimated taking the basis

of the current health status. The input force is modeled using a vehicle struc-

ture model which further helped in assessing vehicle-wise impact on the fatigue

life of a bridge. The proposed approach is validated through numerical experi-

ments on a replicated box girder bridge under vehicle-bridge interaction. A case

study further demonstrates its applicability, focusing on a real bridge in Himachal

Pradesh, India.

6.1 Introduction

Bridge structures are susceptible to cyclic loads that can lead to fatigue-

induced weakening and eventual structural failure Karamchandani et al. (1992),
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even without a visible crack. In cases where a visible and measurable fatigue

crack exists, a fatigue crack model can be applied to predict crack growth, and

appropriate filtering-based SHM solutions have already been detailed in an ear-

lier section. However, this chapter specifically focuses on scenarios where cracks

are not visible, and fatigue damage progressively deteriorates the structural in-

tegrity under normal operating conditions involving repetitive cyclic loads. In

such cases, there are no measurable cracks available to assess the fatigue in the

material, which poses a significant challenge for the filtering-based algorithms

proposed earlier. Consequently, this chapter addresses the estimation of RUL

for bridge infrastructures in crack-free conditions. A comprehensive discussion

of the relevant literature in this context is therefore warranted.

Further, fatigue, as a localized weakening process, offers the opportunity

to monitor specific subdomains instead of the entire structural domain effi-

ciently Marques et al. (2018). Consequently, it becomes possible to identify and

monitor a fatigue-critical subdomain independently, allowing for the estimation

of the RUL of the entire bridge. This approach enables a more rigorous inves-

tigation of the subdomain of interest while reducing expenses associated with

instrumentation and computation. Such methodologies are commonly referred

to as substructure estimation, where the specific subdomain of interest is isolated

numerically from the main structure and complemented with a set of boundary

forces Tee et al. (2003). A substructure-based localized estimation approach has

been detailed in the previous chapter. The same will be taken as a basis in this

chapter in order to devise algorithms for localized fatigue estimation.

6.1.1 RUL estimation conditioned on current health

Traditionally, the estimation of RUL involves measuring stresses in the fa-

tigue critical domain of the operational structure and extrapolating them for

damage prognosis, assuming constant structural health Zhou et al. (2013); Le-

ander et al. (2010). However, the concept of the fatigue critical domain is likely

to change when damage occurs or operational loading conditions are altered.

There are situations where the service life or loading of a structure may need to

be extended beyond the prescribed limits to avoid the cost of replacement. Such

extensions can invalidate the RUL estimate since they do not account for the

structural health deterioration resulting from ageing. As RUL estimates heavily

rely on the current health and operating condition of the structure, the value
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needs to be re-estimated whenever the structure undergoes changes in its health

or loading conditions.

In the context of bridge infrastructures, data-based inverse fatigue life predic-

tion approaches conditioned on the current health state of structures using SHM

techniques have become crucial for ensuring operational safety Kuncham et al.

(2022). While data-driven black box models are efficient, they do not provide

insights into the underlying failure mechanisms Feng et al. (2021). Therefore,

model-based RUL prediction is more appreciated in this regard as it enables a

better understanding of fatigue damage prognosis and allows infrastructure own-

ers to make informed decisions regarding future operations, including allowable

traffic load, speed, frequency, and maintenance schedules. Recursive estimation

of RUL, conditioned on the current estimated health, can be achieved through a

model-based inverse estimation approach that draws inferences from structural

responses and utilizes a high-fidelity support model that accurately replicates re-

ality. In this regard, the incorporation of vehicle-bridge interaction is imperative

to account for vehicle-load-induced fatigue in the support model.

6.1.2 Limited research on reinforced concrete structures

Previous studies on fatigue life estimation have primarily focused on steel

bridges due to their gradual crack propagation characteristics resulting from

their ductile nature. In contrast, reinforced concrete (RC) bridges, which are

more commonly found, have not received sufficient attention in the literature.

While cracks are the more dominant fatigue feature showcased by the typical

truss bridges, for concrete bridges fatigue damage-induced material deteriora-

tion is more common. Existing fatigue evaluation studies on RC bridges have

predominantly concentrated on localized or mesoscale fatigue estimation Wang

et al. (2020a).

The limited attention given to RC bridges stems from various factors, includ-

ing the high execution costs, potential traffic disruptions during assessments, and

the challenges associated with conducting fatigue estimation across the entire

structural domain. However, a few studies have examined full-scale RC struc-

tures, albeit not in abundance. In an effort to enhance the prediction accuracy

of RUL for RC bridges, researchers have explored the integration of fracture

mechanics knowledge Rocha and Brühwiler (2012). Additionally, comprehensive
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fatigue analysis studies involving dynamic testing on bridges in northern Sweden

have been reported by Elfgren et al.Elfgren et al. (2007). The impact of track

irregularities and damping on fatigue damage in RC deck slabs was investigated

by Malveiro et al.Malveiro et al. (2018) in the context of a railway bridge.

6.1.3 Challenges with substructure interface boundaries

Estimating the structural health and fatigue life of a bridge subdomain si-

multaneously and conditionally, without prior information on its health, poses a

significant challenge. Additionally, obtaining boundary forces at the boundary

dof s is necessary for fatigue estimation but challenging, whether through mea-

surement or estimation. Compounding the problem is the need to perform this

estimation under unknown and uncertain operational loading conditions, using

sensor responses that are contaminated with noise. To achieve optimal risk-based

monitoring and maintenance of bridges, it is crucial to frame this problem in the

probabilistic domain, accounting for uncertainties in loading and measurement.

This study tackles the estimation of the subdomain using a Bayesian filtering-

based approach Sen et al. (2021), with the employment of an output injection

approach Zhang and Zhang (2018) to ensure robustness. The same framework

has already been validated in the previous chapter from an SHM perspective,

and this study integrates it with fatigue life estimation.

Within the Bayesian approach, fatigue estimation can be formulated as a

joint state-parameter estimation problem. This involves estimating the struc-

tural responses as states for RUL estimation while conditioning on the parame-

ters, which represent the structural health indices. The derived health state is

then used for renewed fatigue life estimation, incorporating updated information

on the constitutive relationship into the stress/strain calculation during the RUL

estimation process. For practicality, it is advantageous to employ an interacting

filtering environment, following the algorithm detailed in the previous chapter.

The PF-EnKF interacting framework is thus utilized, where the PF estimates

the parameters (resulting in updated constitutive relationships), while the state

estimation can be handled using the EnKF to address modelling and measure-

ment uncertainties Hommels et al. (2009). Vehicle-bridge interaction is further

included in the modelling approach to directly connect vehicle-induced vibration

to fatigue life deterioration.
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6.1.4 Proposed approach for RUL prediction

A Bayesian model-based approach for RUL estimation can be employed under

any arbitrary vehicle-induced loading scenario, but the central idea of connecting

the RUL to the individual vehicle loading or frequency will surely be missed. This

study, therefore, includes vehicle-structure interaction in the support model in

order to bring in the direct connection between traffic loading and its impact

on structural fatigue. The objective of the research is therefore to monitor

only a fatigue-critical subdomain of a bridge structure and relate that to the

traffic loading and/or frequency. The proposed algorithm has been validated

numerically on an RC box girder bridge structure excited by traffic loading prior

to employing it on a real bridge.

The following section details the vehicle-bridge interaction model that maps

the vehicle load to the corresponding structural response. Following, the system

identification and fatigue estimation approach proposed is discussed in detail.

6.2 Coupled vehicle-bridge vibration system

Simulating the dynamic interactions between bridges and vehicles has ma-

jorly been attempted in two ways. First, there is the uncoupled iteration method

Fafard et al. (1997), which solves each system independently and performs itera-

tive calculations at each time iteration in order to equilibrate the forces between

the deck and tires. The alternative method involves solving the fully-coupled

super-system and obtaining the solution implicitly. Moreover, there are two

different ways of modelling vehicle dynamics. The first approach, termed the

moving load model, uses influence lines and dynamic amplification factors to

model vehicle dynamics. However, such a static model fails to account for the

dynamics of vehicle-bridge interaction Wang et al. (2020a). Alternatively, vehi-

cle models can be simulated by using a moving spring-mass-damper (MSMD)

which is well-suited for modelling complex vehicle models. For moving vehi-

cles, the load position changes with time, and the surface irregularities on the

deck and the deck vibration jointly oscillate the vehicle suspension Duan and

Yang (2013). Hence, MSMD-coupled systems are employed to determine actual

fatigue stresses on bridge structures Liu et al. (2013).

Based on the FEM-based approach developed by Gao et al. (2014), this study
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adopts a simulation method that systematically incorporates the dynamics of

bridge-vehicle interaction. The coupled equation of the vehicle-bridge vibration

system is further improvised and transformed to the state space equation of a

Bayesian filter for estimating fatigue life. The proposed approach is described

in detail as follows.

6.2.1 Vehicle model

A three-dimensional setup demonstrating the coupled vehicle-structure dy-

namics is schematically presented in Figure 6.1 detailing all the notations used

herein. The governing differential equation for vehicle dynamics Gao et al. (2014)

can be presented as,

Figure 6.1: Schematic plot of the bridge-vehicle interaction Left side shows the vehi-
cle’s front view.

MvÜv + CvU̇v + KvUv = Fg −Fv(x, t) (6.1)

here, Mv, Cv, and Kv are mass, damping, and stiffness matrices of the vehicle

respectively. Uv, U̇v, and Üv are the displacement, velocity, and acceleration

responses of the vehicle. Fv and Fg correspond to interaction force vectors

applied on the vehicle and force vector caused by the effect of the gravitation

respectively. Fv’s dependence on the position of the vehicle on the bridge is

defined through the arguments x (position) and t (time). Assuming there are

ma axles, the vehicle is accordingly defined with 2ma + 3 dof s (2 vertical dof s
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(left and right) per axle along with 3 additional dof s due to vertical (UC1),

pitching (UC2) and swung (UC3) motions of the carriage (C)).

Accordingly, Mv =

Mv,C 0

0 Mv,T

 = diag{mC , J
y
C , J

x
C ,mA1,mB1, · · · ,mBm},

Uv =

{
UCUT

}T

= {Uv,C1, Uv,C2, Uv,C3, Uv,A1, Uv,B1, · · · , Uv,Bm}T ,

Cv =

Cv11 Cv12

Cv21 Cv22

, Cv12 =


−cSA1 −cSB1 · · · −cSBm

−a1cSA1 −a1cSB1 · · · −amcSBm

b1cSA1 b2cSB1 · · · bmcSBm

,

Cv11 =


∑m

q=1(cSAq + cSBq)
∑m

q=1 aq(cSAq + cSBq)∑m
q=1 ai(cSAq + cSBq)

∑m
q=1 a

2
q(cSAq + cSBq)

−
∑m

q=1(b1cSAq + b2cSBq) −
∑m

q=1(b1aqcSAq + b2aqcSBq)

,

−
∑m

q=1(b1cSAq + b2cSBq)

−
∑m

q=1(b1aqcSAq + b2aqcSBq)∑m
q=1(b

2
1cSAq + b22cSBq)

 ,

Cv22 =



cSA1 + cTA1 0 · · · 0

0 cSB1 + cTB1 · · · 0

...
...

. . .
...

0 0 · · · cSBm + cTBm


, and Cv21 = Cv12

T .

Note that Kv is exactly the same as Cv, only substituting the symbol c for

the symbol K. aq and bq denote, respectively, the distance from the wheel to the

centre in longitudinal and transverse directions.

The subscripts A/B and C/S/T denote the association of the variable with

wheel axis (A (left) or B (right)) and levels (Carriage (C), suspension (S) or tire

level (T)) respectively. The symbols m, k, c, J denote mass, stiffness, damping,

and polar moment of inertia in general for the single dof subsystems defined in
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Figure 6.1. Fv = {FC ,FT}T = {0nC
,FT}T with FT listing the interaction

forces at the tyre levels and FT = {kTpq∆pq + cTpq∆̇pq} for all p ∈ [A, B],

q ∈ [1, · · · ,ma]. ∆pq and ∆̇pq (for detailed derivation refer Gao et al. (2014))

are the relative displacement and velocity at tire levels at the point of contact

between the bridge and the wheel (pth side in qth axle). nC is the number of dof s

of the vehicle carriage.

6.2.2 Bridge model

The dynamics of the bridge deck (cf. Figure 6.1) is defined with its mass

(Md), damping (Cd), stiffness (Kd) matrices and the corresponding interaction

force (Fd(x, t)).

MdÜd + CdU̇d + KdUd = Fdδ(x− V t) (6.2)

where Ud, U̇d, and Üd are the displacement, velocity, and acceleration response

of the bridge deck in the physical domain. V represents speed of the moving

vehicle, and δ is the Dirac function having the following characteristics:

∫ tex

ten

Fd(x, t)δ(x− V t)dx =


0, (t < ten)

Fd(x, t), (ten ≤ t ≤ tex)

0, (t > tex)

(6.3)

The function Fd(x, t) is continuous in the closed interval of t ∈ [ten, tex], where

ten, tex are the entering and exiting time of the vehicle respectively Duan and

Yang (2013). Assuming the Rayleigh model for damping, Equation (6.2) can be

transformed to the modal domain as:

MdÜd(t) + CdU̇d(t) + KdUd(t) = ΦTFd(x, t)δ(x− V t) (6.4)

here Md = I, Cd = diag([2ξ1ω1 . . . 2ξnωn]), Kd = diag([ω2
1 . . . ω

2
n]), and Ud =

ΦTUd, where Md, Cd, Kd and Ud are modal mass, damping, stiffness, and dis-

placement matrices respectively. Φ represents the mass normalized mode shape

vectors. ωn, ξn represents the modal frequency and damping ratio for the nth

mode shape.
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6.2.3 Vehicle-bridge interaction

The interaction force for the pqth wheel (detailed earlier) is given by,

Fv(x, t) = −Fd(x, t) = kTpq∆pq + cTpq∆̇pq (6.5)

The relative displacement at an arbitrary interaction point for a wheel at pth

side of qth axle can further be elaborated as ∆pq = Ud,pq(t) − Uv,pq(x, t) +

rpq(x), and accordingly, ∆̇pq = U
′

d,pqV + U̇d,pq − U̇v,pq + r
′
pqV , where U denotes

displacement (in physical domain) and subscript b/v denotes its association with

bridge or vehicle respectively. p, q denotes the position of the interaction point

and r denotes the road surface roughness at the location mentioned through its

subscript (see Section 6.2.4 for more detail).

Accordingly, the coupled equations of the vehicle-bridge system can be ob-

tained by the combination of the vehicle Equation (6.1) and bridge Equation (6.4)

as follows, Mv 0

0 Md



Üv

Üd

+

 Cv Cdv1

CT
dv1 Cd + Cdv



U̇v

U̇d

+

 Kv Kdv1

Kdv2 Kd + Kdv



Uv

Ud

 =


Fv

Fd


(6.6)

here, Cdv1 =

 0nc

CdT

, CdT =



δ1ϕ
(1)
1 cTA1 δ1ϕ

(1)
2 cTA1 · · · δ1ϕ

(1)
n cTA1

δ1ϕ
(2)
1 cTB1 δ1ϕ

(2)
2 cTB1 · · · δ1ϕ

(2)
n cTB1

...
...

. . .
...

δmϕ
(m)
1 cTBm δmϕ

(m)
2 cTBm · · · δmϕ

(m)
n cTBm


,

Kdv1 =

 0nc

KdT1

, KdT1 = −



δ1ϕ
(1)
1 kTA1 δ1ϕ

(2)
1 kTB1 · · · δmϕ

(m)
1 kTBm

δ1ϕ
(1)
2 kTA1 δ1ϕ

(2)
2 kTB1 · · · δmϕ

(m)
2 kTBm

...
...

. . .
...

δ1ϕ
(1)
n kTA1 δ1ϕ

(2)
n kTB1 · · · δmϕ

(m)
n kTBm


,

Kdv2 =

[
0nc KdT2

]
,
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Subsequently, the Ud is transformed into Ud utilizing Φ. The stress time history

is then computed based on Ud, utilizing the strain-displacement and stress-strain

relationships. Here, r(x) is the road surface roughness, x is the position in the

longitudinal direction of the bridge.

6.2.4 Road surface roughness

A periodically modulated random process can be used to describe the ran-

domness of the bridge surface roughness. In this case, it is defined by its power

spectral density function (PSD) Henchi et al. (1998); Dodds and Robson (1973),

which is given by

Sr(γ) = Arγ
−2 γL < γ < γU (6.7)

where, Sr(γ) is the PSD, Ar is the roughness coefficient and its values are con-

sidered from Gao et al. (2014) and γ, γL,γU is the spatial frequency, lower and

upper limit. In this model, bridge surface roughness is assumed to be a station-

ary Gaussian random process. Thus, it can be generated using an inverse Fourier

transform, to generate a random number θi distributed uniformly between 0 to

2π. The road profile in its discrete form is given by Henchi et al. (1998); Gao

et al. (2014)

r(x) =
N∑
i=1

(
4Ar

(
γL + (i− 0.5)∆γ

)−2

∆γ

)0.5

cos(2πγix− θi) (6.8)

where ∆γ = γU−γL
N

, N is the sampling number.
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6.3 The robust state-space formulation for sub-

structure system

The previous section details the procedure to map the individual vehicle load-

ing to the corresponding structural response which will be useful for estimating

the contribution of an individual vehicle to the fatigue damage provided the

system health is estimated properly. This chapter, however, attempts health

estimation only for the fatigue critical subdomain while being robust to any ex-

ternal (vehicle loading) or boundary forces with Bayesian filters. Accordingly,

this mandates a state space model only for the concerned fatigue-prone subdo-

main, discussed next.

The bridge dynamics of the entire structural domain Ω given in Equation (6.2)

have been simplified for better representation by removing the subscripts and

associating the time-varying nature of the system matrices M, C, and K to

enable system identification.

M(t)Ü (t) + C (t) U̇ (t) + K (t)U (t) = F (t) (6.9)

This study focuses only on subdomain Ωs of the entire Ω which is further es-

timated using filter-based estimation approaches. As per the previous chapter,

the state-space formulation of the substructure system is formulated as,

Process model : xs
k = As

kx
s
k−1 + Bs

kf
s
k + Es

kÜ
s
b,k + vs

k

Measurement model : ys
k = Hs

kx
s
k + Ds

kf
s
k + Ls

kÜ
s
b,k + ws

k

(6.10)

In the context of Section 4.3.2, the matrices As,Bs, Es, Hs
k, Ds

k, and Ls
k remain

unchanged, while only xs
k = [Uk

s,r U̇s,r
k

]T , and f sk = F(t) is modified to ac-

count for the vehicle-bridge interaction acting on the internal nodes of Ωs. Üs
b

is the acceleration acting on its boundaries inducing inertia force to the sub-

structure. In order to eliminate the interface forces from the state equation, the

output injection technique Zhang and Zhang (2018) is used and the process and

measurement model are modified (for detail derivation refer to Section 4.3.3) as,

Process model : xs
k = Ãs

kx
s
k−1 + B̃s

kf
s
k + Gs

ky
s
k + ṽs

k

Measurement model : zsk = H̃s
kx

s
k + D̃s

kf
s
k + w̃s

k

(6.11)
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The estimation of states and parameters is conducted by using the formulated

equations by employing an IPEnKF, as described in Chapter 4, Section 4.2.2.

6.4 Fatigue evaluation model

Finally, in order to quantify the level of fatigue damage already incurred by

the structure, a damage index needs to be adopted. In the context of concrete

bridges, the Palmgren–Miner rule Miner (1945) and S–N curve are typically been

used in the literature taking basis on Eurocode 2. With the Palmgren–Miner

rule, the fatigue damage accumulation index (FDI) D can be defined as Equa-

tion (2.2). D denotes the level of fatigue-induced damage already incurred by

the structure at its critical section with its highest value as 1 denoting complete

failure Kwon et al. (2019). ni is the number of stress cycles of the ith fixed

stress range the structure has been subjected to and Ni denotes the number of

stress cycles at that given stress range needed for failure. Here, the entire stress

range is assumed to be subdivided into ms numbers of stress ranges. In order

to prevent fatigue, condition D ≤ 1 ideally should be satisfied. Accordingly, the

remaining fatigue life can be defined as the departure of D from unity. ni can

further be determined using the rain-flow counting algorithm Downing and Socie

(1982) obtained by analyzing the stress history while Ni can be obtained from

the S-N curve of the material.

6.4.1 Fatigue evaluation of reinforcement

The fatigue failure of RC structures is majorly dependent on the steel rein-

forcement compared to concrete which is why an in-depth analysis of concrete

fatigue can safely be circumvented in estimating the fatigue damage of the RC

structure Elfgren (2015). Based on the verification conditions detailed in Wang

et al. (2020a), the fatigue evaluation of reinforcement can be defined as follows:

If
∆σN∗

γS
≤ γF∆σs

i ≤
∆σN∗

γS
; Ni =N∗

(
∆σN∗
γS

γF∆σs
i

)k1

;

else
∆σN∗

γS
> γF∆σs

i ≤
∆σN∗

γS
; Ni =N∗

(
∆σN∗
γS

γF∆σs
i

)k2
(6.12)

143



here, N∗ is the characteristic fatigue strength which can be obtained as the

number of stress cycles required for failure ∆σN∗ which generally depends on

the type of reinforcement. Ni denotes the number of stress cycles for the ith

stress range needed for failure ∆σs
i . γS and γF are the partial safety factors

for the reinforcement and fatigue respectively with their recommended values as

1.15 and 1.0. k1 and k2 signify the slopes (first and second ) of the S-N curve,

respectively. Euro-code-2 specifies the values for ∆σN∗ , N∗, k1, and k2 as 162.5

MPa, 1 × 106, 5, and 9 respectively.

The following Figure 6.2 illustrates the proposed SHM-based fatigue life as-

sessment method. The proposed approach is validated on a numerical RC bridge

structure prior to applying it to a real bridge structure.

Figure 6.2: Flowchart of SHM-based fatigue life assessment method.

6.5 Numerical experiment

In this study, the numerical experiment is carried out using a 3D FEM of an

RC box girder bridge (c.f Figure 6.3) with geometric properties: span = 31 m,

area = 6.46 m2, and material properties: mass density (ρ) = 2500 kg/m3 and

elastic modulus (E) = 40.6 GPa. Each element of the bridge is represented as a

two-noded 3D Euler-Bernoulli beam with six dof s at each node (3 vertical and

3 rotational).
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(a) Three-axle loading truck (b) Cross section of a box girder

(c) Bridge model with its substructure

Figure 6.3: Schematic diagram of a box girder bridge model with its substructure used
in numerical verification.

6.5.1 Identification of fatigue critical elements using pri-

mary estimation

In order to identify critical elements in the bridge, it is excited using simulated

vehicle force, and accordingly, strain responses are sampled from each element.

To simulate vehicle force, a three-axle truck is selected with its mechanical prop-

erties Gao et al. (2014) listed in Table 6.1. Subsequently, the vehicle structure

interaction approach detailed previously is employed to simulate the bridge re-

sponse under this loading. Next, critical elements of the bridge are identified

using the stress history data. In this process, the stress history is first converted

to the corresponding stress range vs cycles diagram using the rain-flow counting

technique. Using the Miner rule, FDI is further calculated for all the elements

(cf. Figure 6.2). Accordingly, the 13th element is perceived to be critical as

shown in Figure 6.4.

6.5.2 Local parameter estimation based on the substruc-

ture technique

In the process of identifying the critical element, it is typical to assume a stan-

dard value for the elastic modulus for mapping stress from the measured strain.

Nevertheless, this assumption is still crude in the sense that over prolonged us-

age, the material properties are supposed to deteriorate. Eventually, this calls
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Table 6.1: Mechanical properties of the three-axle vehicle model

Property Value

Mass of truck body 31800 kg

Mass of front wheel 400 kg

Mass of middle/rear wheel 600 kg

Pitching moment of inertia 40000 kg m2

Rolling moment of inertia 10000 kg m2

Upper stiffness (front axle) 1200 kN m−1

Upper stiffness (middle/rear axle) 2400 kN m−1

Upper damping (front axle) 5 kN s m−1

Upper damping (middle/rear axle) 10 kN s m−1

Lower stiffness (front axle) 2400 kN m−1

Lower stiffness (middle/rear axle) 4800 kN m−1

Lower damping (front axle) 6 kN s m−1

Lower damping (middle/rear axle) 12 kN s m−1

Distance (front axle to center) 4.6 m

Distance (middle axle to center) 0.36 m

Distance (rear axle to center) 1.4 m

Wheelbase 1.8 m

Truck speed 10 km/h

Figure 6.4: FDI for all structural elements under vehicle force.

for updated information on material properties which can be approached via the

methodology proposed in this study. Surely, updating material properties will
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inevitably affect the stress mapping and selection of the S–N curve required for

the fatigue analyses. This will also update the structural health by identifying

any damages incurred by the bridge, which will require updating the support

model as well. Yet this update will ensure a more precise estimation of FDI

and/or RUL.

Eventually, following the approach proposed in this study, the bridge is mon-

itored only for its fatigue critical zone in an attempt to estimate the FDI and

RUL for the entire bridge. Supported by the initial numerical analysis, the 11th

to 16th elements are accordingly adopted as the substructure under considera-

tion. The adopted substructure is further defined by five internal nodes and two

boundary nodes. Replicating the actual scenario, strain response under vehicle

load is sampled from the internal nodes at a sampling frequency of 50 Hz (i.e.

dt = 0.02 s) and further added with SWGN of 1% snr to mimic real-life situa-

tions. Next, the proposed algorithm is employed for estimating stress histories

conditioned on the current health while being completely unaware of the external

loading or boundary forces.

The proposed approach adopts location-based HIs as the health parameters

that take a value within a range of [0; 1]. This value for an arbitrary ith element

is further used to scale the standardized element elasticity E0 in order to realize

element elasticity Ei as Ei = HIiE0. For system estimation as per the algo-

rithm detailed in 2, the initial distribution of the parameter HIs are assumed

as N (1.7, 0.01) for bench-marking the current health of the bridge with α set to

0.99 (cf. Equation (6.11)). 1000 particles and 50 ensembles are adopted for PF

and EnKF simulations respectively.

Figure 6.5a demonstrates that the proposed approach has successfully esti-

mated the stress histories while being conditioned on precise estimates for the

HIs. This clearly demonstrates the capability of the proposal to avoid unneces-

sary instrumentation of the entire bridge especially when the fatigue critical zone

is already identified. The proposal also investigates cases when damage is present

in the structure. The pertinent case study deals with a system wherein one ele-

ment within the fatigue critical zone is weakened (by 50%) through its elasticity

and the proposed algorithm has precisely identified the location and severity (cf.

Figure 6.5b). Figure 6.6, the estimated stress histories for substructure elements

are compared against their true values (simulated from the full-scale model) and

the results seem promising. In Figure 6.7, the actual measurements obtained

through simulation are further compared with those predicted from the esti-
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mated states which can be found to be matching closely. Estimated FDI taking

basis on the estimated state history is also found to be very close (relative error

< 6%) to the same obtained from the full-scale model simulation.

(a) Benchmarking of HIs for the undam-
aged structure

(b) Health estimation for the damaged
structure

Figure 6.5: Evaluation of substructure health indices for benchmarking and damaged
beam (dashed lines represent respective actual values).

Figure 6.6: Comparison between estimated and actual vehicle-induced stress histories
for the critical (13th) element

(a) Comparison of acceleration (b) Error b/w estimated and measured

Figure 6.7: Reconstruction of internal responses from estimated states and actual mea-
surement responses.

148



6.6 Influence of vehicle parameters on FDI

In the previous investigation, it has been observed that under no knowledge

of forces and bridge health, substructure stress histories, are conditioned on the

current health estimate, and subsequently the FDI can be estimated using the

proposed methodology. The further objective would be to perform prognosis

studies to estimate the RUL of the structure under current and future loading

status and road roughness. Of course, it is evident that RUL can be directly

estimated if future stress history can be made available. However, this will

eventually make the involvement of a numerical model mandatory to map the

vehicle-induced loads to the corresponding stress in the critical member. This

section attempts to assess the impact of each vehicle loading on the overall FDI.

This way, the accumulated impact of a sequence of vehicles over a prolonged time

can be decomposed into individual vehicle impacts so that FDI can be assessed

directly from the vehicle loading history instead of the stress history. In achieving

this objective, a parametric analysis must be undertaken under different vehicle

parameters, like axle types, speed, the weight of vehicles, and also for different

surface roughness of the road.

A numerical investigation for five different surface roughness: very good,

good, average, poor, and very poor based on the roughness coefficient, has been

undertaken (cf. Figure 6.8a). Nevertheless, the influence of roughness has been

found not to be significant (except for very poor conditions) for FDI. Similarly,

speed is varied (10, 25, 50, 75, 100 km/h) for a particular vehicle type under

the same surface roughness and has been observed to be significantly affecting

the FDIs (cf. Figure 6.8c). The impacts of axle types such as 2A-Car(2-axle

car), 2A-Van(2-axle van), 2A-Truck(2-axle truck), 3A-Truck(3-axle truck), 4A-

Truck(4-axle truck) are detailed in cf. Figure 6.8d and varying vehicular weight

of 3A-Truck are detailed in Figure 6.8b on FDIs are also perceived to be ma-

jor. Nevertheless, since axle type itself induces the impact of weight indirectly,

consideration of vehicular weight separately for FDI calculation is avoided.

Finally, further investigation is taken up with vehicle type and speed vary-

ing simultaneously, and the FDIs for each of the cases are presented in Fig-

ure 6.9. With these individual FDI estimates, the cumulative impact of a se-

quence of vehicles on the FDI can be directly estimated without approaching

costly model simulation for stress mapping. Of course, this inherently assumes

that the bridge’s health remains unchanged throughout this traffic loading. A
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change when anticipated or detected would, however, be estimated by the pro-

posed monitoring approach and subsequently, the correlation between FDI and

vehicle properties should be updated.

In the following, a real bridge is investigated with the proposed approach

with traffic considered to be the only loading.

(a) Surface roughness (b) Vehicle weight

(c) Vehicle speed (d) Vehicle categories

Figure 6.8: FDI of a critical (13th) element under different categories.

Figure 6.9: FDI of a critical (13th) element with different vehicle speed and categories.
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6.7 Experimental study

Real-time experiments are conducted on a reinforced concrete box girder

bridge, locally called as “Kamand bridge” (cf. Figure 6.10) built over the river

Uhl, a part of the river Beas watershed. The bridge is 72 m long, 4.3 m wide,

whereas the main span is 41.35 m with a single lane capable. The average daily

traffic data for this bridge is approximately 3000 vehicles, which is determined

manually and categorized based on the type and speed of the vehicle in the

Table 6.2

Figure 6.10: Kamand Bridge, Kamand village near Mandi town, Himachal Pradesh,
India.

Table 6.2: Traffic classification according to vehicle type and speed

Vehicle vehicle speed in km/h Total by

type 10 25 50 75 100 vehicle type

2A- Car 404 1029 282 96 2 1813

2A-Van 92 224 36 14 0 366

2A-Truck 181 482 46 0 0 709

3A-Truck 78 52 1 0 0 131

4A-Truck 0 2 0 0 0 2

Total number of vehicles 3021

The health state of the bridge structure is benchmarked using wireless tri-
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axial accelerometers as shown in Figure 6.11. Supported by the preliminary

inspections that revealed that responses only in the vertical directions are in-

significant, only vertical vibrations are measured. In total, 11 equidistant sensors

are placed on the deck of the bridge with their positions schematically detailed

in Figure 6.11. The acceleration history is recorded under moving vehicles with

a sampling frequency of 64 Hz since the major dominant modes of the bridge

are estimated to be lying within the bandwidth of [0 − 32] Hz. .

(a) Sensor locations over the main span

(b) Cross-section

Figure 6.11: Schematic representation of the bridge structure.

To implement the proposed approach on the real bridge, an accurate numer-

ical replica (Digital Twin or DT) of the structure is prepared using the FEM

approach with geometric details given in Figure 6.11. The actual boundary con-

straints, as found in the field, are modelled in the DT with pin and roller support

at two of its ends.

6.7.1 Calibration of the digital twin model of Kamand

bridge

Calibration of the DT model with respect to the real structure is undertaken

in the modal domain. The modal analysis is performed and modes are com-

pared against the same estimated using FDD of the measured response. For

this, the material elasticity is, however, assumed to be uniform throughout the

bridge, and subsequently tuned manually to match, within acceptable limits, the

estimated frequencies to the same obtained from the measured response. The

comparison between these is presented in Table 6.3. The calibrated model is fur-

ther assessed to be sufficiently replicating the real structure. Further fine-tuning

is subsequently approached via the proposed approach detailed in this chapter.
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Table 6.3: Comparison between frequencies obtained experimentally and numerically.

Data
Experimental Calibrated Relative

value numerical error (%)

Frequency (Hz)
ω1 3.25 3.26 0.31

ω2 11.90 11.02 7.40

6.7.2 Proposed fatigue life assessment approach

As in reality, elasticity varies spatially, the numerical model of the bridge is

required to be bench-marked assuming independent elasticity values for all its

elements using the proposed algorithm. Similar to section 6.5.1, the DT model

is examined under a simulated three-axle loading truck to determine the critical

element 1. Following, the stresses and subsequently the FDIs are calculated for

each of the elements (as detailed in Figure 6.12) from which the 9th element is

identified as critical. Accordingly, the 7th to 12th elements are grouped under a

single substructure which is required to be instrumented and monitored. Again,

as detailed in section 6.5.2, 50 ensembles and 1000 particles are used for the

proposed IPEnKF-based system estimation approach with α = 0.99. Assuming

a Gaussian distribution of N (1, 0.01) for the HIs of the elements within iso-

lated substructures, the proposed algorithm is allowed to draw inferences from

the measured data in order to estimate the stress histories in the monitored

subdomain conditioned on its current health.

Figure 6.12: FDI for all structural elements of the DT model of the Kamand bridge
under vehicle force.

1The same can also be obtained experimentally by abundantly instrumenting the entire
structure, which, however, has been avoided in this study.
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In order to validate the quality of the updated model, the predicted mea-

surements are further compared against the actual measurements in Figure 6.13.

Figure 6.14a demonstrates the convergence of the HIs to different values around

1, signifying the variation in the elasticity of the in-situ concrete. Finally, the

FDI estimates are refined with the updated elasticity values which are then em-

ployed for the RUL estimation of the bridge under the assumption of constancy

in the structural health (cf. Figure 6.14b). Typical traffic loads, as surveyed,

have been taken into consideration for this RUL estimation only to demonstrate

the capability of the proposed approach. The same can be undertaken for al-

tered (or more detailed) loading scenarios (e.g. combined traffic, wind, etc.)

depending on the need.

(a) Comparison of acceleration (b) Error b/w estimated and measured

Figure 6.13: Reconstruction of internal responses from estimated states and actual
measurement responses.

(a) (b)

Figure 6.14: Evaluation of substructureHI and FDI of a digital twin model: a) Bench-
marking of HIs; b) FDI of a critical (9th) element.

In the context of the monitored bridge, which typically experiences low-

magnitude traffic (refer to Table ??), the FDIs for its critical location are derived
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through direct simulation involving a daily train of 3021 vehicles. Remarkably,

the analysis of resulting stress history leads to an FDI value that deviates by

only 4.6% (relative error) from the estimate obtained without a computationally

intensive simulation, as outlined in this chapter. This impressive level of accu-

racy supports the conclusion that the decomposed approach for FDI estimation

is not only highly reliable but also cost-effective.

An uncertainty analysis is also undertaken to establish a range of predicted

FDI values, utilizing a probabilistic measure for traffic following a Gaussian

distribution N (3021, 475) for the next 650 years (cf. Figure 6.15). The coefficient

of variation in the vehicle numbers is assumed to be 15% and is used for the

validation of the proposed approach within a Gaussian distribution framework.

In addition, the estimation of a critical element’s service life involves factoring in

the annual traffic growth rate based on IRC 108−1996, which is determined by

the bridge’s location and subsequently calculating the yearly increase in traffic

load. Interestingly, the proposed approach consistently produces predictions that

align perfectly within a 95 percentile confidence interval. These findings further

underscore the approach’s robustness and its potential for dependable fatigue

damage estimation even in long-term projections.
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Figure 6.15: Service life of a critical element
The first subplot of the graph illustrates the projected service life of the
Kamand bridge for the next 120 years. During this period, the FDI
remains at a low level. Moving on to the next subplot of the graph, the
FDI gradually increases with respect to service time and reaches its highest
point of 1 at the 656 year mark. Utilizing a conventional methodology,
the anticipated service life of the Tsing Ma Bridge is predicated as a
718 years Ye et al. (2012)
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The RUL of the Kamand bridge is estimated approximately 650 years, a

duration that might appear noteworthy. A similar study using conventional

methodology is conducted on the Tsing Ma bridge, utilizing measured strain

data, revealing a predicted fatigue life of 718 years Ye et al. (2012). This could

be partly due to the possibility that the current traffic volume on the bridge

is comparatively lower than the maximum allowable traffic volume required for

the structure. It is important to note that the precision of RUL is intrinsically

linked to the accessibility of a sufficient quantity of daily strain data for the

critical element Ye et al. (2012).

6.8 Summary

The traditional method of fatigue life estimation for structures requires moni-

toring the entire structural domain regardless of its location-based fatigue prone-

ness. The precise estimation employing high-dimensional models and dense in-

strumentation is however redundant for cases when information regarding fa-

tigue critical location is available. Targeting such cases, a novel substructure-

estimation-based approach powered by a Bayesian filtering algorithm is demon-

strated here that concentrates the monitoring effort only for the fatigue-critical

location. Isolating a subdomain from the entire structural domain needs a precise

estimation of boundary forces, which is circumvented in this proposal through

an output injection technique. Further, the proposal also addresses the idealistic

assumption of the constancy of the health state throughout the service life of

the bridge and provides a means to conditionally estimate the fatigue life with

respect to the current health state. The approach is validated against a numer-

ical model and found to be sufficiently accurate leading to an inexpensive yet

generalized and robust approach to fatigue life estimation.

Nevertheless, precise RUL estimation demands a full-scale numerical model

to be simulated under operational conditions (load, structural health, etc.). This

cost-intensive simulation procedure is bypassed by defining a decomposed esti-

mation approach for fatigue damage accumulation index (FDI)s wherein traffic

properties can be employed directly to arrive at the FDI without the numerical

simulation. The proposal is numerically validated before employing life predic-

tion for a real bridge. The overall performance is perceived to be convincing and

promising for fatigue life estimation for high-dimensional infrastructures.
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Chapter 7

Conclusion

This dissertation focused on the assessment of fatigue life for bridge infras-

tructures. The inspiration for this study came from the remarkable longevity of

Victoria Bridge in Mandi, Himachal Pradesh, which has served for 143 years.

The goal was to understand the factors affecting the service life of structures

and develop accurate prediction methods to safeguard their integrity.

The research proposed a probabilistic framework for fatigue life estimation

using SHM techniques. Two approaches, stress life, and fracture mechanics, were

discussed. The stress-life approach utilized stress history data obtained from

SHM to assess fatigue damage and predict life. The fracture mechanics approach

employed Paris’s Law to estimate crack growth based on stress intensity factors.

The effectiveness of the proposed framework for calculating SIFs was validated

through numerical simulations and comparisons with analytical results. The

results demonstrated the reliability and efficiency of the algorithm in calculating

SIFs.

Chapter 3 presents an online Bayesian model-assisted filtering-based prog-

nosis algorithm for predicting the service life of civil infrastructural components

susceptible to fatigue failure. The algorithm incorporates an updated Paris law

model to account for crack closure effects. The study demonstrates that the

algorithm can effectively estimate the crack growth of the components, even

with limited data availability. It provides mean estimates of parameters and

crack growth, along with confidence intervals, making it practical for real-life

applications. The proposed approach shows excellent performance with thermo-

mechanical loading and makes it a suitable method for estimating the RUL of

civil infrastructure subjected to fatigue-loaded.
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Chapter 4 introduces a substructuring-based monitoring approach for assess-

ing the fatigue life of large structures. The simple substructure technique with

boundary forces known demonstrates its accuracy and precision in estimating

response parameters for damaged cases. However, it acknowledges limitations

such as extensive monitoring and interdependence of substructure models. To

overcome the challenge of unavailable boundary measurements, a novel Bayesian

filter-based approach is proposed. This approach proves to be stand-alone, com-

putationally efficient, and prompt in estimation. The combination of Parti-

cle Filter and Ensemble Kalman Filter enables parallelization and interface-

independent estimation, making it suitable for distributed health monitoring

systems. The effectiveness of the proposed algorithm is validated through nu-

merical and real experiments, confirming its accuracy, precision, and efficiency

in detecting and quantifying health deterioration. In summary, this research

provides a framework for efficient component-wise monitoring and its potential

application in fatigue life estimation for large structural domains.

Chapter 5 presents a comprehensive approach for estimating the fatigue life

of large civil structures with visible cracks. By integrating various techniques,

including the updated substructure model and an algorithm for accurate esti-

mation of boundary forces, the RUL estimation is achieved. The approach is

validated through numerical simulations, experimental investigations, and field

experiments on the Chandra bridge, demonstrating its precision and accuracy.

Moreover, the application of the proposed approach with different loading con-

ditions demonstrates the reliability of the fatigue life predictions. Overall, this

research provides valuable insights and a practical framework for ensuring struc-

tural integrity and prolonging the service life of civil structures in real-life sce-

narios.

Chapter 6 presents a substructure-estimation-based approach that offers a

practical solution for estimating fatigue life for structures with no visible crack

by targeting critical fatigue locations instead of monitoring the entire structural

domain. The proposed approach, powered by a Bayesian filtering algorithm,

efficiently concentrates monitoring efforts on the fatigue-critical location, reduc-

ing the need for dense instrumentation. By addressing the idealistic (as well as

non-realistic) assumption of a constant health state, the approach provides con-

ditional fatigue life estimation based on the current health status. The numerical

validation and subsequent application to a real bridge demonstrate the accuracy

and cost-effectiveness of the proposed approach for fatigue life estimation in
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high-dimensional infrastructures.

Overall, this dissertation addresses a few of the major problems in the field of

fatigue life estimation for bridge infrastructures. The developed methodologies

and techniques provide valuable tools for engineers and researchers to assess the

integrity and predict the RUL of structures.

7.1 Limitations of the work

Despite the attempts to address the challenges of SHM-based fatigue life

assessment, such as limited data, large structures, and estimation of vehicle-

induced forces on structural dynamics, there are still limitations with the pro-

posed algorithms. These limitations are discussed below:

• While the algorithms have been primarily developed for bridge infrastruc-

ture, rigorous validation on actual bridge structures with fatigue damage

is necessary to ensure their accuracy and reliability.

• Although the approaches have been developed and validated using numeri-

cal and real experiments, obtaining crack growth data from real structures

was challenging due to practical constraints. Further, such opportunities

of monitoring a crack present in a member of a bridge are rare. As an

alternative, a replica of the real structure was created, and crack growth

data was artificially induced through ABAQUS-XFEM.

• Currently, the algorithms incorporate only stationary white Gaussian noise

to mimic real-time uncertainty in sensor data. To enhance realism, future

work should consider the inclusion of non-stationary coloured Gaussian

noise, which more closely represents the variability in real-world conditions.

• The estimation of RUL currently focuses on bridge-vehicle interaction.

However, for more accurate life estimation, it is important to consider

additional factors such as wind-induced vibration or vortex-induced vibra-

tion, which can significantly impact structural fatigue.

• The calculation of SIF currently considers only axial loading. For more

accurate life estimation, it is recommended to incorporate loading in all

translational and rotational directions of the structure, providing a more

comprehensive understanding of crack propagation and fatigue life.
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• To improve the realism of crack modelling, future studies should consider

the inclusion of surface crack conditions, as these are commonly observed

in practical scenarios.

• Previous studies calculated worst-case scenarios by applying thermome-

chanical loading conditions. To further enhance the calculation of RUL, it

is suggested to apply these scenarios to real-time bridge structures, allow-

ing for more accurate predictions under realistic operating conditions.

By addressing these limitations and incorporating the suggested improve-

ments, future research can advance the field of SHM-based fatigue life assessment

and provide more accurate predictions for the RUL of engineering structures.

7.2 Future work

Based on the accomplishments and remaining limitations of this study, the

future scope is outlined as follows:

• Real-time application: The worst-case scenario determination based on

thermo-mechanical loading conditions can be applied to real-time bridge

structures, allowing for accurate and timely estimation of RUL under re-

alistic operating conditions.

• Further validation: Rigorous validation of the developed methodology

on bridge infrastructure is essential to ensure its applicability and robust-

ness in real-world scenarios.

• Comprehensive SIF: The calculation of SIF can be further developed to

consider loading conditions in all translational and rotational directions of

the structure, thereby providing a more comprehensive understanding of

crack propagation and fatigue life estimation. Furthermore, probabilistic

XFEM will be considered for incorporating system uncertainties to provide

a probabilistic SIF estimate.

• Realistic crack modelling : Future studies can focus on incorporat-

ing surface crack conditions to enhance the accuracy and realism of crack

modelling, reflecting the diverse range of crack types observed in practical

scenarios.

160



• Expansion of RUL estimation: The estimation of the RUL based on

bridge-vehicle interaction can be expanded to include additional factors,

such as wind-induced vibration or vortex-induced vibration, which can

significantly impact the structural integrity of the system. Furthermore,

stress induced by ambient conditions has to be considered as a random

variable

• Retrofitting strategies: To enhance the RUL of structures, retrofitting

techniques such as applying patches on the crack surface can be explored.

These strategies can help restrict crack growth and extend the structural

integrity of damaged/ageing systems.

• Implementation of strain/stress reduction techniques: Incorporat-

ing strain/stress reduction techniques, such as tuned mass dampers, can

provide an alternative approach to enhance the RUL of structures by re-

ducing applied stress levels and mitigating fatigue damage.

• Application to other engineering structures: The algorithm devel-

oped in this study shows potential for application in various engineer-

ing domains, including civil, mechanical, aerospace, military, and offshore

structures. Further investigations can be conducted to assess its effective-

ness and adaptability in these areas.

By addressing these aspects in future research, this study can contribute to

further advancements in the field of fatigue life prediction and structural integrity

assessment in engineering structures.
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